Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.12236
Cited By
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
19 January 2024
Yifan Hao
Tong Zhang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness"
47 / 47 papers shown
Title
Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
Mouin Ben Ammar
David Brellmann
Arturo Mendoza
Antoine Manzanera
Gianni Franchi
OODD
84
0
0
04 Nov 2024
More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory
James B. Simon
Dhruva Karkada
Nikhil Ghosh
Mikhail Belkin
AI4CE
BDL
81
14
0
24 Nov 2023
Benign Overfitting in Deep Neural Networks under Lazy Training
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Francesco Locatello
Volkan Cevher
AI4CE
41
10
0
30 May 2023
The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression
Hamed Hassani
Adel Javanmard
AAML
26
36
0
13 Jan 2022
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
86
102
0
07 Oct 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
59
15
0
05 Aug 2021
Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation
Ke Wang
Vidya Muthukumar
Christos Thrampoulidis
51
49
0
21 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi Zhou
Arthur Gretton
MLT
79
35
0
06 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
38
218
0
26 May 2021
Provable Robustness of Adversarial Training for Learning Halfspaces with Noise
Difan Zou
Spencer Frei
Quanquan Gu
33
13
0
19 Apr 2021
Do Wider Neural Networks Really Help Adversarial Robustness?
Boxi Wu
Jinghui Chen
Deng Cai
Xiaofei He
Quanquan Gu
AAML
53
95
0
03 Oct 2020
A law of robustness for two-layers neural networks
Sébastien Bubeck
Yuanzhi Li
Dheeraj M. Nagaraj
62
57
0
30 Sep 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
49
125
0
15 Aug 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
81
151
0
16 May 2020
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Niladri S. Chatterji
Philip M. Long
41
108
0
25 Apr 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
801
0
26 Feb 2020
Precise Tradeoffs in Adversarial Training for Linear Regression
Adel Javanmard
Mahdi Soltanolkotabi
Hamed Hassani
AAML
50
107
0
24 Feb 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
119
940
0
04 Dec 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
94
109
0
19 Jun 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
82
242
0
14 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
80
389
0
30 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,839
0
06 May 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
74
202
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
184
743
0
19 Mar 2019
Two models of double descent for weak features
M. Belkin
Daniel J. Hsu
Ji Xu
90
374
0
18 Mar 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
129
2,549
0
24 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
227
1,647
0
28 Dec 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
62
282
0
06 Sep 2018
Just Interpolate: Kernel "Ridgeless" Regression Can Generalize
Tengyuan Liang
Alexander Rakhlin
60
353
0
01 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,195
0
20 Jun 2018
On the adversarial robustness of robust estimators
Lifeng Lai
Erhan Bayraktar
33
10
0
11 Jun 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
99
1,778
0
30 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
790
0
30 Apr 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
60
419
0
05 Feb 2018
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
155
2,151
0
21 Aug 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
146
1,255
0
27 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
58
1,030
0
23 May 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,626
0
10 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
421
2,937
0
15 Sep 2016
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Behnam Neyshabur
Ruslan Salakhutdinov
Nathan Srebro
ODL
79
307
0
08 Jun 2015
Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers
A. Wyner
Matthew A. Olson
J. Bleich
David Mease
87
269
0
28 Apr 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
90
657
0
20 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
274
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
268
14,918
1
21 Dec 2013
Margins, Shrinkage, and Boosting
Matus Telgarsky
80
73
0
18 Mar 2013
The spectrum of kernel random matrices
N. Karoui
151
224
0
04 Jan 2010
1