ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05396
  4. Cited By
Loss it right: Euclidean and Riemannian Metrics in Learning-based Visual
  Odometry

Loss it right: Euclidean and Riemannian Metrics in Learning-based Visual Odometry

19 December 2023
Olaya Álvarez-Tunón
Yury Brodskiy
Erdal Kayacan
ArXiv (abs)PDFHTMLGithub (6★)

Papers citing "Loss it right: Euclidean and Riemannian Metrics in Learning-based Visual Odometry"

8 / 8 papers shown
Title
Monocular visual simultaneous localization and mapping: (r)evolution from geometry to deep learning-based pipelines
Olaya Álvarez-Tunón
Yury Brodskiy
Erdal Kayacan
240
6
0
04 Mar 2025
Leveraging Equivariant Features for Absolute Pose Regression
Leveraging Equivariant Features for Absolute Pose Regression
M. A. Musallam
Vincent Gaudillière
M. O. D. Castillo
Kassem Al Ismaeil
Djamila Aouada
101
22
0
05 Apr 2022
Rigidity Preserving Image Transformations and Equivariance in
  Perspective
Rigidity Preserving Image Transformations and Equivariance in Perspective
Lucas Brynte
Georg Bökman
Axel Flinth
Fredrik Kahl
60
3
0
31 Jan 2022
TartanVO: A Generalizable Learning-based VO
TartanVO: A Generalizable Learning-based VO
Wenshan Wang
Yaoyu Hu
Sebastian Scherer
59
158
0
31 Oct 2020
AtLoc: Attention Guided Camera Localization
AtLoc: Attention Guided Camera Localization
Bing Wang
Changhao Chen
Chris Xiaoxuan Lu
Peijun Zhao
A. Trigoni
Andrew Markham
72
156
0
08 Sep 2019
Understanding the Limitations of CNN-based Absolute Camera Pose
  Regression
Understanding the Limitations of CNN-based Absolute Camera Pose Regression
Torsten Sattler
Qunjie Zhou
Marc Pollefeys
Laura Leal-Taixe
SSL
91
385
0
18 Mar 2019
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent
  Convolutional Neural Networks
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
Sen Wang
R. Clark
Hongkai Wen
A. Trigoni
73
785
0
25 Sep 2017
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
347
4,181
0
26 Apr 2015
1