Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.01148
Cited By
PAC-Bayes-Chernoff bounds for unbounded losses
2 January 2024
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PAC-Bayes-Chernoff bounds for unbounded losses"
21 / 21 papers shown
Title
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
Valentina Zantedeschi
Pascal Germain
MLT
AI4CE
54
1
0
26 Sep 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
80
4
0
13 Feb 2024
Generalization Bounds: Perspectives from Information Theory and PAC-Bayes
Fredrik Hellström
G. Durisi
Benjamin Guedj
Maxim Raginsky
34
36
0
08 Sep 2023
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
94
58
0
23 Feb 2022
Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote
Yi-Shan Wu
A. Masegosa
S. Lorenzen
Christian Igel
Yevgeny Seldin
26
8
0
25 Jun 2021
Information Complexity and Generalization Bounds
P. Banerjee
Guido Montúfar
34
14
0
04 May 2021
Still no free lunches: the price to pay for tighter PAC-Bayes bounds
Benjamin Guedj
L. Pujol
FedML
52
23
0
10 Oct 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
87
456
0
12 Jun 2019
PAC-Bayes under potentially heavy tails
Matthew J. Holland
62
42
0
20 May 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
124
222
0
16 Jan 2019
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
75
527
0
28 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
67
295
0
21 May 2018
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
147
680
0
26 Nov 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
80
605
0
29 Jul 2017
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
143
445
0
22 May 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
103
812
0
31 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
314
4,624
0
10 Nov 2016
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
65
183
0
27 May 2016
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization
Pierre Alquier
Benjamin Guedj
72
17
0
06 Jan 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
717
27,303
0
02 Dec 2015
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
272
458
0
03 Dec 2007
1