ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.17238
  4. Cited By
Fast Inference of Mixture-of-Experts Language Models with Offloading

Fast Inference of Mixture-of-Experts Language Models with Offloading

28 December 2023
Artyom Eliseev
Denis Mazur
    MoE
ArXiv (abs)PDFHTML

Papers citing "Fast Inference of Mixture-of-Experts Language Models with Offloading"

19 / 19 papers shown
Title
MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems
MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems
Yao Fu
Yao Fu
Yeqi Huang
Ping Nie
Zhan Lu
...
Dayou Du
Tairan Xu
Dayou Du
Edoardo Ponti
Luo Mai
MoE
94
1
0
16 May 2025
MiLo: Efficient Quantized MoE Inference with Mixture of Low-Rank Compensators
MiLo: Efficient Quantized MoE Inference with Mixture of Low-Rank Compensators
Beichen Huang
Yueming Yuan
Zelei Shao
Minjia Zhang
MQMoE
111
0
0
03 Apr 2025
Mixture of Lookup Experts
Mixture of Lookup Experts
Shibo Jie
Yehui Tang
Kai Han
Yongqian Li
Duyu Tang
Zhi-Hong Deng
Yunhe Wang
MoE
104
1
0
20 Mar 2025
CoServe: Efficient Collaboration-of-Experts (CoE) Model Inference with Limited Memory
CoServe: Efficient Collaboration-of-Experts (CoE) Model Inference with Limited Memory
Jiashun Suo
Xiaojian Liao
Limin Xiao
Li Ruan
Jinquan Wang
Xiao Su
Zhisheng Huo
102
0
0
04 Mar 2025
DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference
DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference
Yujie Zhang
Shivam Aggarwal
T. Mitra
MoE
125
1
0
16 Dec 2024
ProMoE: Fast MoE-based LLM Serving using Proactive Caching
ProMoE: Fast MoE-based LLM Serving using Proactive Caching
Xiaoniu Song
Zihang Zhong
Rong Chen
Haibo Chen
MoE
98
6
0
29 Oct 2024
Fiddler: CPU-GPU Orchestration for Fast Inference of Mixture-of-Experts Models
Fiddler: CPU-GPU Orchestration for Fast Inference of Mixture-of-Experts Models
Keisuke Kamahori
Tian Tang
Yile Gu
Kan Zhu
Baris Kasikci
122
24
0
10 Feb 2024
AWQ: Activation-aware Weight Quantization for LLM Compression and
  Acceleration
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
Ji Lin
Jiaming Tang
Haotian Tang
Shang Yang
Wei-Ming Chen
Wei-Chen Wang
Guangxuan Xiao
Xingyu Dang
Chuang Gan
Song Han
EDLMQ
95
574
0
01 Jun 2023
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
BigScience Workshop
:
Teven Le Scao
Angela Fan
Christopher Akiki
...
Zhongli Xie
Zifan Ye
M. Bras
Younes Belkada
Thomas Wolf
VLM
394
2,388
0
09 Nov 2022
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
Tim Dettmers
M. Lewis
Younes Belkada
Luke Zettlemoyer
MQ
98
653
0
15 Aug 2022
Language model compression with weighted low-rank factorization
Language model compression with weighted low-rank factorization
Yen-Chang Hsu
Ting Hua
Sung-En Chang
Qiang Lou
Yilin Shen
Hongxia Jin
60
107
0
30 Jun 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILMLRM
509
6,279
0
05 Apr 2022
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
Nan Du
Yanping Huang
Andrew M. Dai
Simon Tong
Dmitry Lepikhin
...
Kun Zhang
Quoc V. Le
Yonghui Wu
Zhiwen Chen
Claire Cui
ALMMoE
222
819
0
13 Dec 2021
BASE Layers: Simplifying Training of Large, Sparse Models
BASE Layers: Simplifying Training of Large, Sparse Models
M. Lewis
Shruti Bhosale
Tim Dettmers
Naman Goyal
Luke Zettlemoyer
MoE
197
281
0
30 Mar 2021
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
208
698
0
24 Jan 2021
GShard: Scaling Giant Models with Conditional Computation and Automatic
  Sharding
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Zhiwen Chen
MoE
103
1,184
0
30 Jun 2020
Up or Down? Adaptive Rounding for Post-Training Quantization
Up or Down? Adaptive Rounding for Post-Training Quantization
Markus Nagel
Rana Ali Amjad
M. V. Baalen
Christos Louizos
Tijmen Blankevoort
MQ
88
585
0
22 Apr 2020
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
445
20,298
0
23 Oct 2019
Pointer Sentinel Mixture Models
Pointer Sentinel Mixture Models
Stephen Merity
Caiming Xiong
James Bradbury
R. Socher
RALM
328
2,895
0
26 Sep 2016
1