ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15965
  4. Cited By
Efficient Reinforcement Learning via Decoupling Exploration and
  Utilization
v1v2v3v4 (latest)

Efficient Reinforcement Learning via Decoupling Exploration and Utilization

26 December 2023
Jingpu Yang
Helin Wang
Qirui Zhao
Zhecheng Shi
Zirui Song
Miao Fang
ArXiv (abs)PDFHTMLGithub (18★)

Papers citing "Efficient Reinforcement Learning via Decoupling Exploration and Utilization"

20 / 20 papers shown
Title
A Survey of Progress on Cooperative Multi-agent Reinforcement Learning
  in Open Environment
A Survey of Progress on Cooperative Multi-agent Reinforcement Learning in Open Environment
Lei Yuan
Ziqian Zhang
Lihe Li
Cong Guan
Yang Yu
LRM
47
37
0
02 Dec 2023
Robust Multi-agent Communication via Multi-view Message Certification
Robust Multi-agent Communication via Multi-view Message Certification
Lei Yuan
T. Jiang
Lihe Li
F. Chen
Zongzhang Zhang
Yang Yu
78
2
0
07 May 2023
Off-Policy Evaluation with Online Adaptation for Robot Exploration in
  Challenging Environments
Off-Policy Evaluation with Online Adaptation for Robot Exploration in Challenging Environments
Yafei Hu
Junyi Geng
Chen Wang
John Keller
Sebastian Scherer
OffRL
90
15
0
07 Apr 2022
Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated
  Exploration
Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration
Lukas Schafer
Filippos Christianos
Josiah P. Hanna
Stefano V. Albrecht
83
23
0
19 Jul 2021
A Minimalist Approach to Offline Reinforcement Learning
A Minimalist Approach to Offline Reinforcement Learning
Scott Fujimoto
S. Gu
OffRL
134
830
0
12 Jun 2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Theodore H. Moskovitz
Jack Parker-Holder
Aldo Pacchiano
Michael Arbel
Michael I. Jordan
65
59
0
07 Feb 2021
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
  Learned
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've Learned
Julian Ibarz
Jie Tan
Chelsea Finn
Mrinal Kalakrishnan
P. Pastor
Sergey Levine
OffRL
158
534
0
04 Feb 2021
DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games
DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games
Alessandro Sestini
A. Kuhnle
Andrew D. Bagdanov
36
6
0
03 Dec 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
97
521
0
30 Mar 2020
Self-Supervised Exploration via Disagreement
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
85
384
0
10 Jun 2019
Generative Adversarial User Model for Reinforcement Learning Based
  Recommendation System
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System
Xinshi Chen
Shuang Li
Hui Li
Shaohua Jiang
Yuan Qi
Le Song
64
209
0
27 Dec 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
84
453
0
28 Feb 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
198
5,226
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,432
0
04 Jan 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELMLM&RoBDL
150
1,144
0
02 Jan 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
583
19,315
0
20 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
835
11,961
0
09 Mar 2017
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Shai Shalev-Shwartz
Shaked Shammah
Amnon Shashua
120
840
0
11 Oct 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
210
8,882
0
04 Feb 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
332
13,295
0
09 Sep 2015
1