ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09323
  4. Cited By
Perspectives on the State and Future of Deep Learning - 2023

Perspectives on the State and Future of Deep Learning - 2023

7 December 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
ArXivPDFHTML

Papers citing "Perspectives on the State and Future of Deep Learning - 2023"

5 / 5 papers shown
Title
Spin glass model of in-context learning
Spin glass model of in-context learning
Yuhao Li
Ruoran Bai
Haiping Huang
LRM
42
0
0
05 Aug 2024
Calibrating Large Language Models Using Their Generations Only
Calibrating Large Language Models Using Their Generations Only
Dennis Ulmer
Martin Gubri
Hwaran Lee
Sangdoo Yun
Seong Joon Oh
UQLM
424
18
1
09 Mar 2024
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
R. Roscher
M. Rußwurm
Caroline Gevaert
Michael C. Kampffmeyer
J. A. dos Santos
...
Ronny Hansch
Stine Hansen
Keiller Nogueira
Jonathan Prexl
D. Tuia
32
10
0
08 Dec 2023
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
76
185
0
19 Apr 2021
1