Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.08227
Cited By
v1
v2
v3 (latest)
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
13 December 2023
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Differentially Private Gradient Flow based on the Sliced Wasserstein Distance"
36 / 36 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
109
0
0
03 Feb 2025
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
66
9
0
10 May 2024
Privacy-preserving data release leveraging optimal transport and particle gradient descent
Konstantin Donhauser
Javier Abad
Neha Hulkund
Fanny Yang
85
5
0
31 Jan 2024
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Jean-Yves Franceschi
Mike Gartrell
Ludovic Dos Santos
Thibaut Issenhuth
Emmanuel de Bezenac
Mickaël Chen
A. Rakotomamonjy
DiffM
69
23
0
25 May 2023
Differentially Private Diffusion Models Generate Useful Synthetic Images
Sahra Ghalebikesabi
Leonard Berrada
Sven Gowal
Ira Ktena
Robert Stanforth
Jamie Hayes
Soham De
Samuel L. Smith
Olivia Wiles
Borja Balle
DiffM
73
73
0
27 Feb 2023
Extracting Training Data from Diffusion Models
Nicholas Carlini
Jamie Hayes
Milad Nasr
Matthew Jagielski
Vikash Sehwag
Florian Tramèr
Borja Balle
Daphne Ippolito
Eric Wallace
DiffM
131
615
0
30 Jan 2023
Differentially Private Diffusion Models
Tim Dockhorn
Tianshi Cao
Arash Vahdat
Karsten Kreis
DiffM
84
100
0
18 Oct 2022
Asymptotics of smoothed Wasserstein distances in the small noise regime
Yunzi Ding
Jonathan Niles-Weed
OT
59
2
0
13 Jun 2022
Pre-trained Perceptual Features Improve Differentially Private Image Generation
Fredrik Harder
Milad Jalali Asadabadi
Danica J. Sutherland
Mijung Park
96
28
0
25 May 2022
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
80
72
0
01 Nov 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
101
21
0
21 Oct 2021
Statistical and Topological Properties of Gaussian Smoothed Sliced Probability Divergences
A. Rakotomamonjy
Mokhtar Z. Alaya
Maxime Bérar
Gilles Gasso
92
5
0
20 Oct 2021
Differentially Private Sliced Wasserstein Distance
A. Rakotomamonjy
L. Ralaivola
54
24
0
05 Jul 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
74
75
0
01 Jun 2021
GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen
Tribhuvanesh Orekondy
Mario Fritz
SyDa
56
185
0
15 Jun 2020
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
49
86
0
12 Mar 2020
DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation
Frederik Harder
Kamil Adamczewski
Mijung Park
SyDa
143
101
0
26 Feb 2020
Gaussian-Smooth Optimal Transport: Metric Structure and Statistical Efficiency
Ziv Goldfeld
Kristjan Greenewald
OT
57
41
0
24 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Yue Liu
110
74
0
21 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
116
164
0
11 Jun 2019
Privacy Amplification by Mixing and Diffusion Mechanisms
Borja Balle
Gilles Barthe
Marco Gaboardi
J. Geumlek
50
43
0
29 May 2019
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
86
122
0
21 Jun 2018
Differentially Private Generative Adversarial Network
Liyang Xie
Kaixiang Lin
Shu Wang
Fei Wang
Jiayu Zhou
SyDa
92
501
0
19 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Deep Learning for Medical Image Analysis
Mina Rezaei
Haojin Yang
Christoph Meinel
77
2,070
0
17 Aug 2017
GAN and VAE from an Optimal Transport Point of View
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
DRL
67
63
0
06 Jun 2017
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
190
631
0
01 Jun 2017
From optimal transport to generative modeling: the VEGAN cookbook
Olivier Bousquet
Sylvain Gelly
Ilya O. Tolstikhin
Carl-Johann Simon-Gabriel
B. Schoelkopf
OT
95
147
0
22 May 2017
On the Reconstruction of Face Images from Deep Face Templates
Guangcan Mai
Kai Cao
Pong C. Yuen
Anil K. Jain
3DH
CVBM
82
184
0
02 Mar 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
177
4,827
0
26 Jan 2017
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
272
4,159
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,162
0
01 Jul 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,067
0
10 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
271
14,023
0
19 Nov 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
1