ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.07088
  4. Cited By
BED: Bi-Encoder-Decoder Model for Canonical Relation Extraction

BED: Bi-Encoder-Decoder Model for Canonical Relation Extraction

12 December 2023
Nantao Zheng
Siyu Long
Xinyu Dai
ArXiv (abs)PDFHTML

Papers citing "BED: Bi-Encoder-Decoder Model for Canonical Relation Extraction"

4 / 4 papers shown
Title
Stanza: A Python Natural Language Processing Toolkit for Many Human
  Languages
Stanza: A Python Natural Language Processing Toolkit for Many Human Languages
Peng Qi
Yuhao Zhang
Yuhui Zhang
Jason Bolton
Christopher D. Manning
AI4TS
253
1,695
0
16 Mar 2020
Learning Dense Representations for Entity Retrieval
Learning Dense Representations for Entity Retrieval
D. Gillick
Sayali Kulkarni
L. Lansing
Alessandro Presta
Jason Baldridge
Eugene Ie
Diego Garcia-Olano
RALM
76
207
0
23 Sep 2019
Neural Architectures for Named Entity Recognition
Neural Architectures for Named Entity Recognition
Guillaume Lample
Miguel Ballesteros
Sandeep Subramanian
Kazuya Kawakami
Chris Dyer
221
93
0
04 Mar 2016
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,370
0
03 Jun 2014
1