ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06869
  4. Cited By
Adversarial Estimation of Topological Dimension with Harmonic Score Maps

Adversarial Estimation of Topological Dimension with Harmonic Score Maps

11 December 2023
Eric C. Yeats
Cameron Darwin
Frank Liu
Hai Li
ArXivPDFHTML

Papers citing "Adversarial Estimation of Topological Dimension with Harmonic Score Maps"

12 / 12 papers shown
Title
Disentangling Learning Representations with Density Estimation
Disentangling Learning Representations with Density Estimation
Eric C. Yeats
Frank Liu
Hai Helen Li
BDL
DRL
CML
99
2
0
08 Feb 2023
NashAE: Disentangling Representations through Adversarial Covariance
  Minimization
NashAE: Disentangling Representations through Adversarial Covariance Minimization
Eric C. Yeats
Frank Liu
David A. P. Womble
Hai Helen Li
CML
55
10
0
21 Sep 2022
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
57
27
0
29 Jun 2022
Guided Diffusion Model for Adversarial Purification
Guided Diffusion Model for Adversarial Purification
Jinyi Wang
Zhaoyang Lyu
Dahua Lin
Bo Dai
Hongfei Fu
DiffM
211
84
0
30 May 2022
Scikit-dimension: a Python package for intrinsic dimension estimation
Scikit-dimension: a Python package for intrinsic dimension estimation
Jonathan Bac
Evgeny M. Mirkes
Alexander N. Gorban
I. Tyukin
A. Zinovyev
61
82
0
06 Sep 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
224
264
0
18 Apr 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
268
6,293
0
26 Nov 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
178
3,803
0
12 Jul 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
104
2,018
0
08 Feb 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
232
5,024
0
19 Jun 2018
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
170
8,513
0
16 Aug 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
185
14,831
1
21 Dec 2013
1