ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06701
  4. Cited By
Dynamic Adversarial Attacks on Autonomous Driving Systems
v1v2 (latest)

Dynamic Adversarial Attacks on Autonomous Driving Systems

10 December 2023
Amirhosein Chahe
Chenan Wang
Abhishek S. Jeyapratap
Kaidi Xu
Lifeng Zhou
    AAML
ArXiv (abs)PDFHTML

Papers citing "Dynamic Adversarial Attacks on Autonomous Driving Systems"

15 / 15 papers shown
Title
Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems
Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems
Xugui Zhou
Anqi Chen
Maxfield Kouzel
Haotian Ren
Morgan McCarty
Cristina Nita-Rotaru
H. Alemzadeh
AAML
52
2
0
18 Jul 2023
Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial
  Examples Against Traffic Sign Recognition Systems
Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial Examples Against Traffic Sign Recognition Systems
Wei Jia
Zhaojun Lu
Haichun Zhang
Zhenglin Liu
Jie Wang
Gang Qu
AAML
48
53
0
17 Jan 2022
Dual Attention Suppression Attack: Generate Adversarial Camouflage in
  Physical World
Dual Attention Suppression Attack: Generate Adversarial Camouflage in Physical World
Jiakai Wang
Aishan Liu
Zixin Yin
Shunchang Liu
Shiyu Tang
Xianglong Liu
AAML
189
199
0
01 Mar 2021
Adversarial Examples Detection beyond Image Space
Adversarial Examples Detection beyond Image Space
Kejiang Chen
YueFeng Chen
Hang Zhou
Chuan Qin
Xiaofeng Mao
Weiming Zhang
Nenghai Yu
AAML
29
9
0
23 Feb 2021
SLAP: Improving Physical Adversarial Examples with Short-Lived
  Adversarial Perturbations
SLAP: Improving Physical Adversarial Examples with Short-Lived Adversarial Perturbations
Giulio Lovisotto
H.C.M. Turner
Ivo Sluganovic
Martin Strohmeier
Ivan Martinovic
AAML
62
102
0
08 Jul 2020
PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based
  Attentive Cont-conv Fusion Module
PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module
Liang Xie
Chao Xiang
Zhengxu Yu
Guodong Xu
Zheng Yang
Deng Cai
Xiaofei He
3DPC
60
204
0
14 Nov 2019
Fooling automated surveillance cameras: adversarial patches to attack
  person detection
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
107
569
0
18 Apr 2019
Adversarial camera stickers: A physical camera-based attack on deep
  learning systems
Adversarial camera stickers: A physical camera-based attack on deep learning systems
Juncheng Billy Li
Frank R. Schmidt
J. Zico Kolter
AAML
56
167
0
21 Mar 2019
Structured Adversarial Attack: Towards General Implementation and Better
  Interpretability
Structured Adversarial Attack: Towards General Implementation and Better Interpretability
Kaidi Xu
Sijia Liu
Pu Zhao
Pin-Yu Chen
Huan Zhang
Quanfu Fan
Deniz Erdogmus
Yanzhi Wang
Xinyu Lin
AAML
111
161
0
05 Aug 2018
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
78
1,094
0
27 Dec 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
139
2,527
0
26 Oct 2016
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
705
36,958
0
08 Jun 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
169
3,271
0
05 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
126
1,962
0
26 Nov 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
1