ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06607
  4. Cited By
DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection

DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection

11 December 2023
Haoyang He
Jiangning Zhang
Hongxu Chen
Xuhai Chen
Zhishan Li
Xu Chen
Yabiao Wang
Chengjie Wang
Lei Xie
    DiffM
ArXivPDFHTML

Papers citing "DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection"

11 / 11 papers shown
Title
One-to-Normal: Anomaly Personalization for Few-shot Anomaly Detection
One-to-Normal: Anomaly Personalization for Few-shot Anomaly Detection
Yiyue Li
Shaoting Zhang
Kang Li
Qicheng Lao
79
0
0
03 Feb 2025
Attention-Guided Perturbation for Unsupervised Image Anomaly Detection
Attention-Guided Perturbation for Unsupervised Image Anomaly Detection
Tingfeng Huang
Yuxuan Cheng
Jingbo Xia
Rui Yu
Yuxuan Cai
Jinhai Xiang
Xinwei He
AAML
69
0
0
14 Aug 2024
AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot
  Anomaly Detection
AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection
Yunkang Cao
Jiangning Zhang
Luca Frittoli
Yuqi Cheng
Nong Sang
Giacomo Boracchi
VLM
53
29
0
22 Jul 2024
Prior Normality Prompt Transformer for Multi-class Industrial Image
  Anomaly Detection
Prior Normality Prompt Transformer for Multi-class Industrial Image Anomaly Detection
Haiming Yao
Yunkang Cao
Wei Luo
Weihang Zhang
Wenyong Yu
Nong Sang
35
7
0
17 Jun 2024
GLAD: Towards Better Reconstruction with Global and Local Adaptive
  Diffusion Models for Unsupervised Anomaly Detection
GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
Hang Yao
Ming-Yu Liu
Haolin Wang
Zhicun Yin
Zifei Yan
Xiaopeng Hong
W. Zuo
45
15
0
11 Jun 2024
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Jia Guo
Shuai Lu
Weihang Zhang
Huiqi Li
Huiqi Li
Hongen Liao
ViT
69
8
0
23 May 2024
Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Yuhu Bai
Jiangning Zhang
Yuhang Dong
Guanzhong Tian
Liang Liu
Yunkang Cao
Yabiao Wang
Chengjie Wang
39
2
0
07 Mar 2024
Multimodal Industrial Anomaly Detection via Hybrid Fusion
Multimodal Industrial Anomaly Detection via Hybrid Fusion
Yue Wang
Jinlong Peng
Jiangning Zhang
Ran Yi
Yabiao Wang
Chengjie Wang
3DPC
83
87
0
01 Mar 2023
Explainable Anomaly Detection in Images and Videos: A Survey
Explainable Anomaly Detection in Images and Videos: A Survey
Yizhou Wang
Dongliang Guo
Sheng Li
Octavia Camps
Yun Fu
29
5
0
13 Feb 2023
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
117
448
0
26 Jan 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
321
75,834
0
18 May 2015
1