Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.05153
Cited By
v1
v2
v3 (latest)
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
8 December 2023
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Bürkner
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference"
25 / 25 papers shown
Title
Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
Stefania Scheurer
Philipp Reiser
Tim Brünnette
Wolfgang Nowak
A. Guthke
Paul-Christian Bürkner
59
0
0
13 May 2025
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
149
34
0
17 Apr 2024
Improved uncertainty quantification for neural networks with Bayesian last layer
F. Fiedler
S. Lucia
UQCV
BDL
131
14
0
21 Feb 2023
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
Stefan T. Radev
Marvin Schmitt
Valentin Pratz
Umberto Picchini
Ullrich Kothe
Paul-Christian Bürkner
BDL
299
32
0
17 Feb 2023
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
127
90
0
08 Sep 2022
A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms
Paul-Christian Bürkner
Ilja Kroker
S. Oladyshkin
Wolfgang Nowak
70
10
0
12 Apr 2022
Surrogate Ensemble Forecasting for Dynamic Climate Impact Models
J. Kuehnert
D. McGlynn
S. Remy
Aisha Walcott-Bryant
Anne Jones Ibm Research Africa
OOD
40
3
0
12 Apr 2022
Deep Surrogate for Direct Time Fluid Dynamics
Lucas Meyer
Louen Pottier
Alejandro Ribés
Bruno Raffin
AI4CE
59
7
0
16 Dec 2021
Simulation Intelligence: Towards a New Generation of Scientific Methods
Alexander Lavin
D. Krakauer
Hector Zenil
Justin Emile Gottschlich
Tim Mattson
...
A. Hanuka
Manuela Veloso
Samuel A. Assefa
Stephan Zheng
Avi Pfeffer
148
112
0
06 Dec 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
81
389
0
29 Apr 2021
Penalised t-walk MCMC
F. Medina-Aguayo
A. Christen
96
3
0
03 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
659
2,471
0
18 Oct 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
90
290
0
24 Feb 2020
Calibrate, Emulate, Sample
Emmet Cleary
A. Garbuno-Iñigo
Shiwei Lan
T. Schneider
Andrew M. Stuart
112
105
0
10 Jan 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
268
1,444
0
21 Oct 2019
Integrated Nested Laplace Approximations (INLA)
S. Martino
A. Riebler
89
54
0
02 Jul 2019
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
71
29
0
07 Jun 2019
Projective Inference in High-dimensional Problems: Prediction and Feature Selection
Juho Piironen
Markus Paasiniemi
Aki Vehtari
74
96
0
04 Oct 2018
Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
Jiangjiang Zhang
Q. Zheng
Dingjiang Chen
Laosheng Wu
L. Zeng
88
36
0
10 Jul 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCV
BDL
115
649
0
21 Jan 2018
Advanced Bayesian Multilevel Modeling with the R Package brms
Paul-Christian Bürkner
70
1,922
0
31 May 2017
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
721
0
02 Mar 2016
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
164
4,095
0
16 Jul 2015
Adaptive construction of surrogates for the Bayesian solution of inverse problems
Jinglai Li
Youssef M. Marzouk
91
118
0
21 Sep 2013
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
238
4,326
0
18 Nov 2011
1