ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.04960
  4. Cited By
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness

MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness

8 December 2023
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
    AAML
ArXivPDFHTML

Papers citing "MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness"

50 / 94 papers shown
Title
Robust Principles: Architectural Design Principles for Adversarially
  Robust CNNs
Robust Principles: Architectural Design Principles for Adversarially Robust CNNs
Sheng-Hsuan Peng
Weilin Xu
Cory Cornelius
Matthew Hull
Kevin Wenliang Li
Rahul Duggal
Mansi Phute
Jason Martin
Duen Horng Chau
AAML
51
48
0
30 Aug 2023
Hard Patches Mining for Masked Image Modeling
Hard Patches Mining for Masked Image Modeling
Haochen Wang
Kaiyou Song
Junsong Fan
Yuxi Wang
Jin Xie
Zhaoxiang Zhang
53
61
0
12 Apr 2023
Generalist: Decoupling Natural and Robust Generalization
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
68
14
0
24 Mar 2023
Revisiting Adversarial Training for ImageNet: Architectures, Training
  and Generalization across Threat Models
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
Naman D. Singh
Francesco Croce
Matthias Hein
OOD
67
65
0
03 Mar 2023
A Comprehensive Study on Robustness of Image Classification Models:
  Benchmarking and Rethinking
A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking
Chang-Shu Liu
Yinpeng Dong
Wenzhao Xiang
Xiaohu Yang
Hang Su
Junyi Zhu
YueFeng Chen
Yuan He
H. Xue
Shibao Zheng
OOD
VLM
AAML
72
78
0
28 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
46
223
0
09 Feb 2023
IB-RAR: Information Bottleneck as Regularizer for Adversarial Robustness
IB-RAR: Information Bottleneck as Regularizer for Adversarial Robustness
Xiaoyun Xu
Guilherme Perin
S. Picek
AAML
60
1
0
09 Feb 2023
Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial
  Defense
Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial Defense
Zunzhi You
Daochang Liu
Bohyung Han
Chang Xu
AAML
VLM
80
4
0
02 Feb 2023
Designing BERT for Convolutional Networks: Sparse and Hierarchical
  Masked Modeling
Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling
Keyu Tian
Yi Jiang
Qishuai Diao
Chen Lin
Liwei Wang
Zehuan Yuan
52
105
0
09 Jan 2023
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Sanghyun Woo
Shoubhik Debnath
Ronghang Hu
Xinlei Chen
Zhuang Liu
In So Kweon
Saining Xie
SyDa
137
794
0
02 Jan 2023
When Adversarial Training Meets Vision Transformers: Recipes from
  Training to Architecture
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
Yi Mo
Dongxian Wu
Yifei Wang
Yiwen Guo
Yisen Wang
ViT
55
58
0
14 Oct 2022
Denoising Masked AutoEncoders Help Robust Classification
Denoising Masked AutoEncoders Help Robust Classification
Quanlin Wu
Hang Ye
Yuntian Gu
Huishuai Zhang
Liwei Wang
Di He
44
22
0
10 Oct 2022
A Light Recipe to Train Robust Vision Transformers
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
69
71
0
15 Sep 2022
Towards Efficient Adversarial Training on Vision Transformers
Towards Efficient Adversarial Training on Vision Transformers
Boxi Wu
Jindong Gu
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
ViT
AAML
63
39
0
21 Jul 2022
Green Hierarchical Vision Transformer for Masked Image Modeling
Green Hierarchical Vision Transformer for Masked Image Modeling
Lang Huang
Shan You
Mingkai Zheng
Fei Wang
Chao Qian
T. Yamasaki
97
72
0
26 May 2022
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of
  Hierarchical Vision Transformers
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers
Jihao Liu
Xin Huang
Jinliang Zheng
Yu Liu
Hongsheng Li
44
55
0
26 May 2022
Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision
  Transformers with Locality
Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality
Xiang Li
Wenhai Wang
Lingfeng Yang
Jian Yang
150
74
0
20 May 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
100
122
0
21 Feb 2022
Masked Feature Prediction for Self-Supervised Visual Pre-Training
Masked Feature Prediction for Self-Supervised Visual Pre-Training
Chen Wei
Haoqi Fan
Saining Xie
Chaoxia Wu
Alan Yuille
Christoph Feichtenhofer
ViT
141
668
0
16 Dec 2021
Are Vision Transformers Robust to Patch Perturbations?
Are Vision Transformers Robust to Patch Perturbations?
Jindong Gu
Volker Tresp
Yao Qin
AAML
ViT
85
64
0
20 Nov 2021
SimMIM: A Simple Framework for Masked Image Modeling
SimMIM: A Simple Framework for Masked Image Modeling
Zhenda Xie
Zheng Zhang
Yue Cao
Yutong Lin
Jianmin Bao
Zhuliang Yao
Qi Dai
Han Hu
174
1,349
0
18 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
441
7,731
0
11 Nov 2021
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
234
264
0
10 Nov 2021
Data Augmentation Can Improve Robustness
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
55
285
0
09 Nov 2021
When Does Contrastive Learning Preserve Adversarial Robustness from
  Pretraining to Finetuning?
When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning?
Lijie Fan
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Chuang Gan
AAML
VLM
56
123
0
01 Nov 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
68
300
0
18 Oct 2021
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to
  CNNs
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs
Philipp Benz
Soomin Ham
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
ViT
79
79
0
06 Oct 2021
Early Convolutions Help Transformers See Better
Early Convolutions Help Transformers See Better
Tete Xiao
Mannat Singh
Eric Mintun
Trevor Darrell
Piotr Dollár
Ross B. Girshick
47
766
0
28 Jun 2021
XCiT: Cross-Covariance Image Transformers
XCiT: Cross-Covariance Image Transformers
Alaaeldin El-Nouby
Hugo Touvron
Mathilde Caron
Piotr Bojanowski
Matthijs Douze
...
Ivan Laptev
Natalia Neverova
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
ViT
136
512
0
17 Jun 2021
BEiT: BERT Pre-Training of Image Transformers
BEiT: BERT Pre-Training of Image Transformers
Hangbo Bao
Li Dong
Songhao Piao
Furu Wei
ViT
251
2,819
0
15 Jun 2021
Reveal of Vision Transformers Robustness against Adversarial Attacks
Reveal of Vision Transformers Robustness against Adversarial Attacks
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
ViT
34
60
0
07 Jun 2021
Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial
  Robustness
Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness
Zifeng Wang
T. Jian
A. Masoomi
Stratis Ioannidis
Jennifer Dy
AAML
43
25
0
04 Jun 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
142
1,014
0
31 Mar 2021
Understanding Robustness of Transformers for Image Classification
Understanding Robustness of Transformers for Image Classification
Srinadh Bhojanapalli
Ayan Chakrabarti
Daniel Glasner
Daliang Li
Thomas Unterthiner
Andreas Veit
ViT
85
385
0
26 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
434
21,392
0
25 Mar 2021
ConViT: Improving Vision Transformers with Soft Convolutional Inductive
  Biases
ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
Stéphane dÁscoli
Hugo Touvron
Matthew L. Leavitt
Ari S. Morcos
Giulio Biroli
Levent Sagun
ViT
110
825
0
19 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
79
272
0
02 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
866
29,341
0
26 Feb 2021
Deep Deterministic Information Bottleneck with Matrix-based Entropy
  Functional
Deep Deterministic Information Bottleneck with Matrix-based Entropy Functional
Xi Yu
Shujian Yu
José C. Príncipe
AAML
50
27
0
31 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
372
6,757
0
23 Dec 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
177
350
0
20 Nov 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
253
4,052
0
20 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
90
231
0
26 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
601
40,961
0
22 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
314
702
0
19 Oct 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
561
18,008
0
19 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
739
41,894
0
28 May 2020
The Information Bottleneck Problem and Its Applications in Machine
  Learning
The Information Bottleneck Problem and Its Applications in Machine Learning
Ziv Goldfeld
Yury Polyanskiy
54
133
0
30 Apr 2020
Single-step Adversarial training with Dropout Scheduling
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
51
72
0
18 Apr 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
58
247
0
28 Mar 2020
12
Next