ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.04898
  4. Cited By
Quantifying the effectiveness of linear preconditioning in Markov chain
  Monte Carlo

Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo

8 December 2023
Max Hird
Samuel Livingstone
ArXiv (abs)PDFHTML

Papers citing "Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo"

19 / 19 papers shown
Title
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
118
2
0
20 Mar 2024
A Simple Proof of the Mixing of Metropolis-Adjusted Langevin Algorithm
  under Smoothness and Isoperimetry
A Simple Proof of the Mixing of Metropolis-Adjusted Langevin Algorithm under Smoothness and Isoperimetry
Yuansi Chen
Khashayar Gatmiry
56
6
0
08 Apr 2023
Explicit convergence bounds for Metropolis Markov chains: isoperimetry,
  spectral gaps and profiles
Explicit convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and profiles
Christophe Andrieu
Anthony Lee
Samuel Power
Andi Q. Wang
43
23
0
16 Nov 2022
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
72
25
0
29 Dec 2020
Optimal dimension dependence of the Metropolis-Adjusted Langevin
  Algorithm
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
67
66
0
23 Dec 2020
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
66
106
0
09 Mar 2019
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
224
2,149
0
01 Mar 2018
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
276
11,151
0
14 Mar 2016
On the Geometric Ergodicity of Hamiltonian Monte Carlo
On the Geometric Ergodicity of Hamiltonian Monte Carlo
Samuel Livingstone
M. Betancourt
Simon Byrne
Mark Girolami
98
116
0
29 Jan 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
69
414
0
17 Jul 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
83
516
0
23 Dec 2014
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
99
161
0
17 Dec 2014
A useful variant of the Davis--Kahan theorem for statisticians
A useful variant of the Davis--Kahan theorem for statisticians
Yi Yu
Tengyao Wang
R. Samworth
98
579
0
04 May 2014
Information-geometric Markov Chain Monte Carlo methods using Diffusions
Information-geometric Markov Chain Monte Carlo methods using Diffusions
Samuel Livingstone
Mark Girolami
DiffM
96
45
0
31 Mar 2014
Bayesian linear regression with sparse priors
Bayesian linear regression with sparse priors
I. Castillo
Johannes Schmidt-Hieber
A. van der Vaart
175
380
0
04 Mar 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
910
0
17 Feb 2014
Langevin diffusions and the Metropolis-adjusted Langevin algorithm
Langevin diffusions and the Metropolis-adjusted Langevin algorithm
Tatiana Xifara
Chris Sherlock
Samuel Livingstone
Simon Byrne
Mark Girolami
82
126
0
11 Sep 2013
Lagrangian Dynamical Monte Carlo
Lagrangian Dynamical Monte Carlo
Shiwei Lan
V. Stathopoulos
Babak Shahbaba
Mark Girolami
90
45
0
15 Nov 2012
Hyper-g Priors for Generalized Linear Models
Hyper-g Priors for Generalized Linear Models
Daniel Sabanés Bové
L. Held
86
104
0
09 Aug 2010
1