ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.04727
  4. Cited By
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation

E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation

20 February 2025
Boqian Wu
Q. Xiao
Shiwei Liu
Lu Yin
Mykola Pechenizkiy
Decebal Constantin Mocanu
M. V. Keulen
Elena Mocanu
    MedIm
ArXiv (abs)PDFHTML

Papers citing "E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation"

4 / 54 papers shown
Title
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV3DPCSSeg3DH
160
6,556
0
21 Jun 2016
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
  Segmentation
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Fausto Milletari
Nassir Navab
Seyed-Ahmad Ahmadi
248
8,722
0
15 Jun 2016
A topological insight into restricted Boltzmann machines
A topological insight into restricted Boltzmann machines
Decebal Constantin Mocanu
Elena Mocanu
Phuong H. Nguyen
M. Gibescu
A. Liotta
BDL
54
101
0
20 Apr 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,441
0
18 May 2015
Previous
12