ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.03804
  4. Cited By
How Low Can You Go? Surfacing Prototypical In-Distribution Samples for
  Unsupervised Anomaly Detection

How Low Can You Go? Surfacing Prototypical In-Distribution Samples for Unsupervised Anomaly Detection

6 December 2023
Felix Meissen
Johannes Getzner
Alexander Ziller
Georgios Kaissis
Daniel Rueckert
    OODDAI4TS
ArXiv (abs)PDFHTML

Papers citing "How Low Can You Go? Surfacing Prototypical In-Distribution Samples for Unsupervised Anomaly Detection"

16 / 16 papers shown
Title
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
I. Lagogiannis
Felix Meissen
Georgios Kaissis
Daniel Rueckert
OOD
123
20
0
01 Mar 2023
Unsupervised Anomaly Localization with Structural Feature-Autoencoders
Unsupervised Anomaly Localization with Structural Feature-Autoencoders
Felix Meissen
Johannes C. Paetzold
Georgios Kaissis
Daniel Rueckert
MedIm
44
17
0
23 Aug 2022
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
Karsten Roth
Latha Pemula
J. Zepeda
Bernhard Schölkopf
Thomas Brox
Peter V. Gehler
UQCV
88
919
0
15 Jun 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
843
0
17 Nov 2020
PANDA: Adapting Pretrained Features for Anomaly Detection and
  Segmentation
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Tal Reiss
Niv Cohen
Liron Bergman
Yedid Hoshen
69
252
0
12 Oct 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via
  Influence Estimation
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
199
470
0
09 Aug 2020
Classification-Based Anomaly Detection for General Data
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
52
351
0
05 May 2020
Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
  Anomaly Detection
Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection
Jianpeng Zhang
Yutong Xie
Guansong Pang
Zhibin Liao
Johan Verjans
...
Zongji Sun
Jian He
Yi Li
Chunhua Shen
Yong-quan Xia
53
446
0
27 Mar 2020
Deep Nearest Neighbor Anomaly Detection
Deep Nearest Neighbor Anomaly Detection
Liron Bergman
Niv Cohen
Yedid Hoshen
UQCV
82
160
0
24 Feb 2020
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
103
219
0
18 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
84
665
0
06 Nov 2019
Unsupervised Anomaly Localization using Variational Auto-Encoders
Unsupervised Anomaly Localization using Variational Auto-Encoders
David Zimmerer
Fabian Isensee
Jens Petersen
Simon A. A. Kohl
Klaus Maier-Hein
DRL
65
135
0
04 Jul 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
118
526
0
20 Mar 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and
  Expert Comparison
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
112
2,602
0
21 Jan 2019
Latent Space Autoregression for Novelty Detection
Latent Space Autoregression for Novelty Detection
Davide Abati
Angelo Porrello
Simone Calderara
Rita Cucchiara
113
435
0
04 Jul 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
92
606
0
28 May 2018
1