Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.03792
Cited By
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
6 December 2023
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance"
32 / 32 papers shown
Title
Clip Body and Tail Separately: High Probability Guarantees for DPSGD with Heavy Tails
Haichao Sha
Yang Cao
Yong Liu
Yuncheng Wu
Ruixuan Liu
Hong Chen
72
2
0
27 May 2024
Make Landscape Flatter in Differentially Private Federated Learning
Yi Shi
Yingqi Liu
Kang Wei
Li Shen
Xueqian Wang
Dacheng Tao
FedML
59
57
0
20 Mar 2023
Extracting Training Data from Diffusion Models
Nicholas Carlini
Jamie Hayes
Milad Nasr
Matthew Jagielski
Vikash Sehwag
Florian Tramèr
Borja Balle
Daphne Ippolito
Eric Wallace
DiffM
121
606
0
30 Jan 2023
Differentially Private Learning with Per-Sample Adaptive Clipping
Tianyu Xia
Shuheng Shen
Su Yao
Xinyi Fu
Ke Xu
Xiaolong Xu
Xingbo Fu
72
16
0
01 Dec 2022
DPAUC: Differentially Private AUC Computation in Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Junyuan Xie
Di Wu
Chong-Jun Wang
FedML
66
12
0
25 Aug 2022
Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain
Jia-Bao Ji
Huan Wang
Yanhua Huang
Jiaxiang Wu
Xingkun Xu
Shouhong Ding
Shengchuan Zhang
Liujuan Cao
Rongrong Ji
CVBM
PICV
65
38
0
15 Jul 2022
Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization
Xiaodong Yang
Huishuai Zhang
Wei Chen
Tie-Yan Liu
61
38
0
27 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
108
71
0
14 Jun 2022
Large Scale Transfer Learning for Differentially Private Image Classification
Harsh Mehta
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
62
40
0
06 May 2022
Mixed Differential Privacy in Computer Vision
Aditya Golatkar
Alessandro Achille
Yu Wang
Aaron Roth
Michael Kearns
Stefano Soatto
PICV
VLM
67
49
0
22 Mar 2022
Differentially Private Federated Learning with Local Regularization and Sparsification
Anda Cheng
Peisong Wang
Xi Sheryl Zhang
Jian Cheng
FedML
42
74
0
07 Mar 2022
Improving Federated Learning Face Recognition via Privacy-Agnostic Clusters
Qiang Meng
Feng Zhou
Hainan Ren
Tianshu Feng
Guochao Liu
Yuanqing Lin
FedML
66
38
0
29 Jan 2022
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
54
5
0
01 Dec 2021
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
53
93
0
25 Jun 2021
Model-Contrastive Federated Learning
Qinbin Li
Bingsheng He
D. Song
FedML
82
1,039
0
30 Mar 2021
Federated Learning with Sparsification-Amplified Privacy and Adaptive Optimization
Rui Hu
Yanmin Gong
Yuanxiong Guo
FedML
58
55
0
01 Aug 2020
Private Query Release Assisted by Public Data
Raef Bassily
Albert Cheu
Shay Moran
Aleksandar Nikolov
Jonathan R. Ullman
Zhiwei Steven Wu
123
49
0
23 Apr 2020
BackPACK: Packing more into backprop
Felix Dangel
Frederik Kunstner
Philipp Hennig
ODL
86
103
0
23 Dec 2019
Deep Learning with Gaussian Differential Privacy
Zhiqi Bu
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
58
208
0
26 Nov 2019
Limits of Private Learning with Access to Public Data
N. Alon
Raef Bassily
Shay Moran
38
48
0
25 Oct 2019
AdaCliP: Adaptive Clipping for Private SGD
Venkatadheeraj Pichapati
A. Suresh
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
51
124
0
20 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
69
52
0
24 Jul 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
74
460
0
28 May 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
68
339
0
09 May 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
93
249
0
18 Jan 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,184
0
14 Dec 2018
Gradient Descent Happens in a Tiny Subspace
Guy Gur-Ari
Daniel A. Roberts
Ethan Dyer
95
233
0
12 Dec 2018
Measuring the Intrinsic Dimension of Objective Landscapes
Chunyuan Li
Heerad Farkhoor
Rosanne Liu
J. Yosinski
81
413
0
24 Apr 2018
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
Levent Sagun
Utku Evci
V. U. Güney
Yann N. Dauphin
Léon Bottou
54
418
0
14 Jun 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
205
6,121
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,468
0
17 Feb 2016
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
55
161
0
08 Feb 2016
1