ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16298
  4. Cited By
Influence Scores at Scale for Efficient Language Data Sampling

Influence Scores at Scale for Efficient Language Data Sampling

27 November 2023
Nikhil Anand
Joshua Tan
Maria Minakova
    TDI
ArXiv (abs)PDFHTML

Papers citing "Influence Scores at Scale for Efficient Language Data Sampling"

21 / 21 papers shown
Title
BERT on a Data Diet: Finding Important Examples by Gradient-Based
  Pruning
BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning
Mohsen Fayyaz
Ehsan Aghazadeh
Ali Modarressi
Mohammad Taher Pilehvar
Yadollah Yaghoobzadeh
Samira Ebrahimi Kahou
46
18
0
10 Nov 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
  Dynamics
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
114
28
0
20 Sep 2022
Beyond neural scaling laws: beating power law scaling via data pruning
Beyond neural scaling laws: beating power law scaling via data pruning
Ben Sorscher
Robert Geirhos
Shashank Shekhar
Surya Ganguli
Ari S. Morcos
100
444
0
29 Jun 2022
Understanding Memorization from the Perspective of Optimization via
  Efficient Influence Estimation
Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation
Futong Liu
Tao R. Lin
Martin Jaggi
TDI
57
8
0
16 Dec 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
121
462
0
15 Jul 2021
Deep Learning Through the Lens of Example Difficulty
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
87
161
0
17 Jun 2021
What Neural Networks Memorize and Why: Discovering the Long Tail via
  Influence Estimation
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
228
470
0
09 Aug 2020
TLDR: Token Loss Dynamic Reweighting for Reducing Repetitive Utterance
  Generation
TLDR: Token Loss Dynamic Reweighting for Reducing Repetitive Utterance Generation
Shaojie Jiang
Thomas Wolf
Christof Monz
Maarten de Rijke
57
12
0
26 Mar 2020
Estimating Training Data Influence by Tracing Gradient Descent
Estimating Training Data Influence by Tracing Gradient Descent
G. Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
TDI
110
419
0
19 Feb 2020
Adversarial Filters of Dataset Biases
Adversarial Filters of Dataset Biases
Ronan Le Bras
Swabha Swayamdipta
Chandra Bhagavatula
Rowan Zellers
Matthew E. Peters
Ashish Sabharwal
Yejin Choi
124
223
0
10 Feb 2020
Identifying Mislabeled Data using the Area Under the Margin Ranking
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan R. Elenberg
Kilian Q. Weinberger
NoLa
94
274
0
28 Jan 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
651
4,925
0
23 Jan 2020
Distribution Density, Tails, and Outliers in Machine Learning: Metrics
  and Applications
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OODOODD
68
61
0
29 Oct 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
506
20,376
0
23 Oct 2019
Accelerating Deep Learning by Focusing on the Biggest Losers
Accelerating Deep Learning by Focusing on the Biggest Losers
Angela H. Jiang
Daniel L.-K. Wong
Giulio Zhou
D. Andersen
J. Dean
...
Gauri Joshi
M. Kaminsky
M. Kozuch
Zachary Chase Lipton
Padmanabhan Pillai
82
123
0
02 Oct 2019
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
134
743
0
12 Dec 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OODNoLa
152
1,431
0
24 Mar 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
227
2,910
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,027
0
04 Mar 2017
A large annotated corpus for learning natural language inference
A large annotated corpus for learning natural language inference
Samuel R. Bowman
Gabor Angeli
Christopher Potts
Christopher D. Manning
338
4,297
0
21 Aug 2015
1