ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.10908
  4. Cited By
Equivariant Neural Operator Learning with Graphon Convolution

Equivariant Neural Operator Learning with Graphon Convolution

17 November 2023
Chaoran Cheng
Jian-wei Peng
ArXiv (abs)PDFHTML

Papers citing "Equivariant Neural Operator Learning with Graphon Convolution"

20 / 20 papers shown
Title
Prediction of the electron density of states for crystalline compounds
  with Atomistic Line Graph Neural Networks (ALIGNN)
Prediction of the electron density of states for crystalline compounds with Atomistic Line Graph Neural Networks (ALIGNN)
Prathik R. Kaundinya
K. Choudhary
S. Kalidindi
39
29
0
20 Jan 2022
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
117
453
0
19 Aug 2021
Equivariant Graph Neural Networks for 3D Macromolecular Structure
Equivariant Graph Neural Networks for 3D Macromolecular Structure
Bowen Jing
Stephan Eismann
Pratham N. Soni
R. Dror
52
101
0
07 Jun 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas Guibas
3DPC
180
328
0
25 Apr 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
113
1,033
0
19 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
542
0
05 Feb 2021
Fast and Uncertainty-Aware Directional Message Passing for
  Non-Equilibrium Molecules
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
79
324
0
28 Nov 2020
DeepDFT: Neural Message Passing Network for Accurate Charge Density
  Prediction
DeepDFT: Neural Message Passing Network for Accurate Charge Density Prediction
Peter Bjørn Jørgensen
Arghya Bhowmik
38
22
0
04 Nov 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,448
0
18 Oct 2020
Learning from Protein Structure with Geometric Vector Perceptrons
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN3DV
75
493
0
03 Sep 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
153
697
0
18 Jun 2020
Graphon Neural Networks and the Transferability of Graph Neural Networks
Graphon Neural Networks and the Transferability of Graph Neural Networks
Luana Ruiz
Luiz F. O. Chamon
Alejandro Ribeiro
GNN
73
147
0
05 Jun 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
202
748
0
07 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
127
881
0
06 Mar 2020
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,153
0
08 Oct 2019
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
98
978
0
22 Feb 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,086
0
26 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
657
29,154
0
09 Sep 2016
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
67
607
0
09 Sep 2016
1