Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.10832
Cited By
Exploring Machine Learning Models for Federated Learning: A Review of Approaches, Performance, and Limitations
17 November 2023
Elaheh Jafarigol
Theodore Trafalis
Talayeh Razzaghi
Mona Zamankhani
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Exploring Machine Learning Models for Federated Learning: A Review of Approaches, Performance, and Limitations"
20 / 20 papers shown
Title
A compressive multi-kernel method for privacy-preserving machine learning
Thee Chanyaswad
Jerome Chang
S. Kung
47
26
0
20 Jun 2021
Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges
Dinh C. Nguyen
Ming Ding
Quoc-Viet Pham
P. Pathirana
Long Bao
Jun Seneviratne
Jun Li
Dusit Niyato
Life Fellow Ieee Poor
FedML
91
431
0
05 Apr 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
327
873
0
01 Mar 2021
From Federated Learning to Federated Neural Architecture Search: A Survey
Hangyu Zhu
Haoyu Zhang
Yaochu Jin
FedML
OOD
AI4CE
77
151
0
12 Sep 2020
Particle Swarm Optimized Federated Learning For Industrial IoT and Smart City Services
Basheer Qolomany
Kashif Ahmad
Ala I. Al-Fuqaha
Junaid Qadir
58
65
0
05 Sep 2020
Collaborative Fairness in Federated Learning
Lingjuan Lyu
Xinyi Xu
Qian Wang
FedML
68
193
0
27 Aug 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
82
58
0
29 Jul 2020
Less is More: A privacy-respecting Android malware classifier using Federated Learning
Rafa Gálvez
Veelasha Moonsamy
Claudia Díaz
FedML
29
30
0
16 Jul 2020
Blockchain-Federated-Learning and Deep Learning Models for COVID-19 detection using CT Imaging
R. Kumar
A. Khan
Sinmin Zhang
Jay Kumar
Wenyong Wang
Yousif Abuidris
Zakria
Waqas Amin
Sidra Shafiq
WenYong Wang
OOD
FedML
72
328
0
10 Jul 2020
Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy
Nuria Rodríguez Barroso
G. Stipcich
Daniel Jiménez-López
José Antonio Ruiz-Millán
Eugenio Martínez-Cámara
Gerardo González-Seco
M. V. Luzón
M. Veganzones
Francisco Herrera
55
102
0
02 Jul 2020
PIRATE: A Blockchain-based Secure Framework of Distributed Machine Learning in 5G Networks
Sicong Zhou
Huawei Huang
Wuhui Chen
Zibin Zheng
Song Guo
FedML
52
75
0
17 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
259
6,276
0
10 Dec 2019
Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism
L. U. Khan
Shashi Raj Pandey
Nguyen H. Tran
Walid Saad
Zhu Han
Minh N. H. Nguyen
Choong Seon Hong
FedML
57
385
0
06 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
125
1,616
0
01 Nov 2019
Reliable Federated Learning for Mobile Networks
Jiawen Kang
Zehui Xiong
Dusit Niyato
Y. Zou
Yang Zhang
Mohsen Guizani
FedML
50
463
0
14 Oct 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
109
1,001
0
23 Jul 2019
Privacy-Preserving Classification with Secret Vector Machines
Valentin Hartmann
Konark Modi
J. M. Pujol
Robert West
56
14
0
08 Jul 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
74
1,361
0
07 Mar 2019
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,155
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,559
0
17 Feb 2016
1