ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.08819
  4. Cited By
Frequency Domain-based Dataset Distillation

Frequency Domain-based Dataset Distillation

15 November 2023
DongHyeok Shin
Seungjae Shin
Il-Chul Moon
    DD
ArXiv (abs)PDFHTMLGithub (29★)

Papers citing "Frequency Domain-based Dataset Distillation"

36 / 36 papers shown
Title
Leveraging Multi-Modal Information to Enhance Dataset Distillation
Leveraging Multi-Modal Information to Enhance Dataset Distillation
Zhe Li
Hadrien Reynaud
Bernhard Kainz
DD
93
0
0
13 May 2025
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
113
2
0
13 Aug 2024
Generalizing Dataset Distillation via Deep Generative Prior
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
153
93
0
02 May 2023
Detecting and Grounding Multi-Modal Media Manipulation
Detecting and Grounding Multi-Modal Media Manipulation
Rui Shao
Tianxing Wu
Ziwei Liu
89
68
0
05 Apr 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
88
77
0
11 Jan 2023
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
191
146
0
30 Oct 2022
Frequency Domain Model Augmentation for Adversarial Attack
Frequency Domain Model Augmentation for Adversarial Attack
Yuyang Long
Qi-li Zhang
Boheng Zeng
Lianli Gao
Xianglong Liu
Jian Zhang
Jingkuan Song
AAML
80
165
0
12 Jul 2022
Remember the Past: Distilling Datasets into Addressable Memories for
  Neural Networks
Remember the Past: Distilling Datasets into Addressable Memories for Neural Networks
Zhiwei Deng
Olga Russakovsky
FedMLDD
91
94
0
06 Jun 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DDFedML
83
157
0
01 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
486
168
0
30 May 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedMLDD
185
393
0
22 Mar 2022
Overview frequency principle/spectral bias in deep learning
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Yaoyu Zhang
FaML
79
72
0
19 Jan 2022
Dataset Condensation with Distribution Matching
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
77
307
0
08 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
98
235
0
27 Jul 2021
Spectral Unsupervised Domain Adaptation for Visual Recognition
Spectral Unsupervised Domain Adaptation for Visual Recognition
Jingyi Zhang
Jiaxing Huang
Zichen Tian
Shijian Lu
66
68
0
11 Jun 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo Zhao
Hakan Bilen
DD
260
303
0
16 Feb 2021
Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss for Image Reconstruction and Synthesis
Liming Jiang
Bo Dai
Wayne Wu
Chen Change Loy
97
284
0
23 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
667
41,369
0
22 Oct 2020
Dataset Condensation with Gradient Matching
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
116
501
0
10 Jun 2020
PatchAttack: A Black-box Texture-based Attack with Reinforcement
  Learning
PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
Chenglin Yang
Adam Kortylewski
Cihang Xie
Yinzhi Cao
Alan Yuille
AAML
73
109
0
12 Apr 2020
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are
  Failing to Reproduce Spectral Distributions
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
Ricard Durall
Margret Keuper
J. Keuper
71
337
0
03 Mar 2020
Learning in the Frequency Domain
Learning in the Frequency Domain
Kai Xu
Minghai Qin
Fei Sun
Yuhao Wang
Yen-kuang Chen
Fengbo Ren
90
406
0
27 Feb 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
101
219
0
03 Dec 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,445
0
28 Mar 2019
On the Effectiveness of Low Frequency Perturbations
On the Effectiveness of Low Frequency Perturbations
Yash Sharma
G. Ding
Marcus A. Brubaker
AAML
72
123
0
28 Feb 2019
Low Frequency Adversarial Perturbation
Low Frequency Adversarial Perturbation
Chuan Guo
Jared S. Frank
Kilian Q. Weinberger
AAML
63
166
0
24 Sep 2018
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODFedMLELM
168
414
0
01 Jun 2018
Digital Watermarking for Deep Neural Networks
Digital Watermarking for Deep Neural Networks
Yuki Nagai
Yusuke Uchida
S. Sakazawa
Shiníchi Satoh
WIGM
59
144
0
06 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,904
0
25 Aug 2017
Instance Normalization: The Missing Ingredient for Fast Stylization
Instance Normalization: The Missing Ingredient for Fast Stylization
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
OOD
177
3,711
0
27 Jul 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning
  with Humans in the Loop
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
Feng Yu
Ari Seff
Yinda Zhang
Shuran Song
Thomas Funkhouser
Jianxiong Xiao
102
2,343
0
10 Jun 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
Compression, Restoration, Re-sampling, Compressive Sensing: Fast
  Transforms in Digital Imaging
Compression, Restoration, Re-sampling, Compressive Sensing: Fast Transforms in Digital Imaging
L. Yaroslavsky
49
26
0
27 Aug 2014
Fast Training of Convolutional Networks through FFTs
Fast Training of Convolutional Networks through FFTs
Michaël Mathieu
Mikael Henaff
Yann LeCun
129
610
0
20 Dec 2013
1