ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.07073
  4. Cited By
Exposition on over-squashing problem on GNNs: Current Methods,
  Benchmarks and Challenges
v1v2 (latest)

Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges

13 November 2023
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
ArXiv (abs)PDFHTML

Papers citing "Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges"

39 / 39 papers shown
Title
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
Alvaro Arroyo
Alessio Gravina
Benjamin Gutteridge
Federico Barbero
Claudio Gallicchio
Xiaowen Dong
Michael M. Bronstein
P. Vandergheynst
125
13
0
15 Feb 2025
Graph Pseudotime Analysis and Neural Stochastic Differential Equations for Analyzing Retinal Degeneration Dynamics and Beyond
Dai Shi
Kuan Yan
Lequan Lin
Yue Zeng
Ting Zhang
D. Matsypura
Mark C. Gillies
Ling Zhu
Junbin Gao
171
1
0
10 Feb 2025
Cayley Graph Propagation
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
240
6
0
04 Oct 2024
Mitigating Over-Smoothing and Over-Squashing using Augmentations of
  Forman-Ricci Curvature
Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature
Lukas Fesser
Melanie Weber
78
24
0
17 Sep 2023
Unifying over-smoothing and over-squashing in graph neural networks: A
  physics informed approach and beyond
Unifying over-smoothing and over-squashing in graph neural networks: A physics informed approach and beyond
Zhiqi Shao
Dai Shi
Andi Han
Yi Guo
Qianchuan Zhao
Junbin Gao
62
12
0
06 Sep 2023
The Expressive Power of Graph Neural Networks: A Survey
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
208
26
0
16 Aug 2023
How Curvature Enhance the Adaptation Power of Framelet GCNs
How Curvature Enhance the Adaptation Power of Framelet GCNs
Dai Shi
Yi Guo
Zhiqi Shao
Junbin Gao
58
14
0
19 Jul 2023
A Survey on Oversmoothing in Graph Neural Networks
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
91
213
0
20 Mar 2023
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
88
98
0
27 Dec 2022
On the Trade-off between Over-smoothing and Over-squashing in Deep Graph
  Neural Networks
On the Trade-off between Over-smoothing and Over-squashing in Deep Graph Neural Networks
Jhony H. Giraldo
Konstantinos Skianis
T. Bouwmans
Fragkiskos D. Malliaros
63
51
0
05 Dec 2022
Generalized energy and gradient flow via graph framelets
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
156
13
0
08 Oct 2022
Expander Graph Propagation
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
137
56
0
06 Oct 2022
Oversquashing in GNNs through the lens of information contraction and
  graph expansion
Oversquashing in GNNs through the lens of information contraction and graph expansion
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
56
46
0
06 Aug 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
83
67
0
15 Jun 2022
Capturing Graphs with Hypo-Elliptic Diffusions
Capturing Graphs with Hypo-Elliptic Diffusions
Csaba Tóth
Darrick Lee
Celia Hacker
Harald Oberhauser
87
13
0
27 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
125
576
0
25 May 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
448
0
29 Nov 2021
Beltrami Flow and Neural Diffusion on Graphs
Beltrami Flow and Neural Diffusion on Graphs
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
AI4CE
73
86
0
18 Oct 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
123
270
0
21 Jun 2021
GraphiT: Encoding Graph Structure in Transformers
GraphiT: Encoding Graph Structure in Transformers
Grégoire Mialon
Dexiong Chen
Margot Selosse
Julien Mairal
109
170
0
10 Jun 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
102
543
0
07 Jun 2021
A Generalization of Transformer Networks to Graphs
A Generalization of Transformer Networks to Graphs
Vijay Prakash Dwivedi
Xavier Bresson
AI4CE
105
758
0
17 Dec 2020
Directional Graph Networks
Directional Graph Networks
Dominique Beaini
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lio
90
192
0
06 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
239
827
0
16 Jul 2020
A Note on Over-Smoothing for Graph Neural Networks
A Note on Over-Smoothing for Graph Neural Networks
Chen Cai
Yusu Wang
86
276
0
23 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
93
694
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
309
2,746
0
02 May 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
339
173
0
09 Mar 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
458
950
0
02 Mar 2020
Hyperbolic Graph Convolutional Neural Networks
Hyperbolic Graph Convolutional Neural Networks
Ines Chami
Rex Ying
Christopher Ré
J. Leskovec
GNN
113
651
0
28 Oct 2019
Diffusion Improves Graph Learning
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
155
711
0
28 Oct 2019
Simplifying Graph Convolutional Networks
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
246
3,182
0
19 Feb 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
783
8,566
0
03 Jan 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,695
0
01 Oct 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
518
1,990
0
09 Jun 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,233
0
30 Oct 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
Modeling Relational Data with Graph Convolutional Networks
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull
Thomas Kipf
Peter Bloem
Rianne van den Berg
Ivan Titov
Max Welling
GNN
194
4,831
0
17 Mar 2017
DeepWalk: Online Learning of Social Representations
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
263
9,800
0
26 Mar 2014
1