ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.03757
  4. Cited By
Manifold learning: what, how, and why

Manifold learning: what, how, and why

7 November 2023
M. Meilă
Hanyu Zhang
ArXivPDFHTML

Papers citing "Manifold learning: what, how, and why"

22 / 22 papers shown
Title
Latent Manifold Reconstruction and Representation with Topological and Geometrical Regularization
Latent Manifold Reconstruction and Representation with Topological and Geometrical Regularization
Ren Wang
Pengcheng Zhou
39
0
0
07 May 2025
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
Zihao Chen
Wenyong Wang
Jiachen Yang
Yu Xiang
34
0
0
07 May 2025
The When and How of Target Variable Transformations
The When and How of Target Variable Transformations
Loren Nuyts
Jesse Davis
31
0
0
29 Apr 2025
Cryo-em images are intrinsically low dimensional
Cryo-em images are intrinsically low dimensional
Luke Evans
Octavian-Vlad Murad
Lars Dingeldein
Pilar Cossio
Roberto Covino
Marina Meila
AI4CE
38
0
0
15 Apr 2025
Adversarial Subspace Generation for Outlier Detection in High-Dimensional Data
Adversarial Subspace Generation for Outlier Detection in High-Dimensional Data
Jose Cribeiro-Ramallo
Federico Matteucci
Paul Enciu
Alexander Jenke
Vadim Arzamasov
Thorsten Strufe
Klemens Böhm
31
0
0
10 Apr 2025
Analytical Discovery of Manifold with Machine Learning
Analytical Discovery of Manifold with Machine Learning
Yafei Shen
Huan-Fei Ma
Ling Yang
41
0
0
03 Apr 2025
Adaptive Multi-Order Graph Regularized NMF with Dual Sparsity for Hyperspectral Unmixing
Adaptive Multi-Order Graph Regularized NMF with Dual Sparsity for Hyperspectral Unmixing
Hui Chen
Liangyu Liu
Xianchao Xiu
Wanquan Liu
54
0
0
25 Mar 2025
Supervised Manifold Learning for Functional Data
Supervised Manifold Learning for Functional Data
Ruoxu Tan
Yiming Zang
36
0
0
23 Mar 2025
Structure-preserving contrastive learning for spatial time series
Structure-preserving contrastive learning for spatial time series
Yiru Jiao
Sander van Cranenburgh
Simeon C. Calvert
H. Lint
AI4TS
97
0
0
10 Feb 2025
Mask-informed Deep Contrastive Incomplete Multi-view Clustering
Mask-informed Deep Contrastive Incomplete Multi-view Clustering
Zhenglai Li
Yuqi Shi
Xiao He
Chang-Fu Tang
79
0
0
04 Feb 2025
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Tuğçe Gökdemir
Jakub Rydzewski
36
1
0
31 Dec 2024
Pseudo-Non-Linear Data Augmentation via Energy Minimization
Pseudo-Non-Linear Data Augmentation via Energy Minimization
Pingbang Hu
Mahito Sugiyama
26
0
0
01 Oct 2024
Strong denoising of financial time-series
Strong denoising of financial time-series
Matthias J. Feiler
25
0
0
11 Aug 2024
Towards aerodynamic surrogate modeling based on $β$-variational
  autoencoders
Towards aerodynamic surrogate modeling based on βββ-variational autoencoders
Víctor Francés-Belda
Alberto Solera-Rico
Javier Nieto-Centenero
Esther Andrés
Carlos Sanmiguel Vila
Rodrigo Castellanos
AI4CE
31
0
0
09 Aug 2024
A review of unsupervised learning in astronomy
A review of unsupervised learning in astronomy
Sotiria Fotopoulou
43
8
0
25 Jun 2024
Sailing in high-dimensional spaces: Low-dimensional embeddings through
  angle preservation
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
Jonas Fischer
Rong Ma
51
0
0
14 Jun 2024
Inductive Global and Local Manifold Approximation and Projection
Inductive Global and Local Manifold Approximation and Projection
Jungeum Kim
Tianlin Li
51
1
0
12 Jun 2024
Geometric Neural Operators (GNPs) for Data-Driven Deep Learning of
  Non-Euclidean Operators
Geometric Neural Operators (GNPs) for Data-Driven Deep Learning of Non-Euclidean Operators
Blaine Quackenbush
P. Atzberger
AI4CE
33
0
0
16 Apr 2024
Datacube segmentation via Deep Spectral Clustering
Datacube segmentation via Deep Spectral Clustering
A. Bombini
Fernando García-Avello Bofías
Caterina Bracci
Michele Ginolfi
Chiara Ruberto
90
1
0
31 Jan 2024
A statistical framework for analyzing shape in a time series of random
  geometric objects
A statistical framework for analyzing shape in a time series of random geometric objects
Anne van Delft
Andrew J. Blumberg
21
2
0
04 Apr 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean
  Space to Riemannian Manifold
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
30
6
0
16 Feb 2023
Minimax Rates for Estimating the Dimension of a Manifold
Minimax Rates for Estimating the Dimension of a Manifold
Jisu Kim
Alessandro Rinaldo
Larry A. Wasserman
166
24
0
03 May 2016
1