ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.00718
21
0

Pseudo-Non-Linear Data Augmentation via Energy Minimization

1 October 2024
Pingbang Hu
Mahito Sugiyama
ArXivPDFHTML
Abstract

We propose a novel and interpretable data augmentation method based on energy-based modeling and principles from information geometry. Unlike black-box generative models, which rely on deep neural networks, our approach replaces these non-interpretable transformations with explicit, theoretically grounded ones, ensuring interpretability and strong guarantees such as energy minimization. Central to our method is the introduction of the backward projection algorithm, which reverses dimension reduction to generate new data. Empirical results demonstrate that our method achieves competitive performance with black-box generative models while offering greater transparency and interpretability.

View on arXiv
Comments on this paper