ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.20090
  4. Cited By
Bridging the Gap Between Variational Inference and Wasserstein Gradient
  Flows

Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows

31 October 2023
Mingxuan Yi
Song Liu
    DRL
ArXivPDFHTML

Papers citing "Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows"

18 / 18 papers shown
Title
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
112
0
0
03 Oct 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
108
8
0
05 Dec 2023
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
73
1
0
25 Oct 2023
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
80
26
0
17 Jul 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
63
13
0
17 Jun 2022
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
120
40
0
30 Jun 2021
Averaging on the Bures-Wasserstein manifold: dimension-free convergence
  of gradient descent
Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent
Jason M. Altschuler
Sinho Chewi
P. Gerber
Austin J. Stromme
70
36
0
16 Jun 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
321
6,444
0
26 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
182
51
0
20 Oct 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
83
69
0
03 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
148
54
0
23 Mar 2020
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
104
201
0
27 Mar 2017
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
269
11,149
0
14 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
256
4,787
0
04 Jan 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
131
1,166
0
31 Dec 2013
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
127
1,907
0
10 Jan 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
252
2,621
0
29 Jun 2012
1