ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.19698
  4. Cited By
When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and
  Limitations
v1v2 (latest)

When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations

30 October 2023
Aleksandar Petrov
Philip Torr
Adel Bibi
    VPVLM
ArXiv (abs)PDFHTML

Papers citing "When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations"

25 / 25 papers shown
Title
Parameter-Efficient Fine-Tuning of State Space Models
Parameter-Efficient Fine-Tuning of State Space Models
Kevin Galim
Wonjun Kang
Yuchen Zeng
H. Koo
Kangwook Lee
116
4
0
11 Oct 2024
Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts
Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts
Minh Le
Chau Nguyen
Huy Nguyen
Quyen Tran
Trung Le
Nhat Ho
104
8
0
03 Oct 2024
Fine-tuning can cripple your foundation model; preserving features may
  be the solution
Fine-tuning can cripple your foundation model; preserving features may be the solution
Jishnu Mukhoti
Y. Gal
Philip Torr
P. Dokania
CLL
116
47
0
25 Aug 2023
An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning
Yun Luo
Zhen Yang
Fandong Meng
Yafu Li
Jie Zhou
Yue Zhang
CLLKELM
184
318
0
17 Aug 2023
Universal and Transferable Adversarial Attacks on Aligned Language
  Models
Universal and Transferable Adversarial Attacks on Aligned Language Models
Andy Zou
Zifan Wang
Nicholas Carlini
Milad Nasr
J. Zico Kolter
Matt Fredrikson
295
1,518
0
27 Jul 2023
Black-box Prompt Tuning with Subspace Learning
Black-box Prompt Tuning with Subspace Learning
Yuanhang Zheng
Zhixing Tan
Peng Li
Yang Liu
VLM
112
11
0
04 May 2023
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
Vladislav Lialin
Vijeta Deshpande
Anna Rumshisky
100
177
0
28 Mar 2023
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
Zhen Wang
Yikang Shen
Leonid Karlinsky
Rogerio Feris
Huan Sun
Yoon Kim
VLMVPVLM
88
115
0
06 Mar 2023
Transformers learn in-context by gradient descent
Transformers learn in-context by gradient descent
J. Oswald
Eyvind Niklasson
E. Randazzo
João Sacramento
A. Mordvintsev
A. Zhmoginov
Max Vladymyrov
MLT
116
496
0
15 Dec 2022
PANDA: Prompt Transfer Meets Knowledge Distillation for Efficient Model
  Adaptation
PANDA: Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation
Qihuang Zhong
Liang Ding
Juhua Liu
Bo Du
Dacheng Tao
VLMCLL
81
43
0
22 Aug 2022
Recent Advances in Natural Language Processing via Large Pre-Trained
  Language Models: A Survey
Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
Bonan Min
Hayley L Ross
Elior Sulem
Amir Pouran Ben Veyseh
Thien Huu Nguyen
Oscar Sainz
Eneko Agirre
Ilana Heinz
Dan Roth
LM&MAVLMAI4CE
174
1,085
0
01 Nov 2021
SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer
SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer
Tu Vu
Brian Lester
Noah Constant
Rami Al-Rfou
Daniel Cer
VLMLRM
202
290
0
15 Oct 2021
Towards a Unified View of Parameter-Efficient Transfer Learning
Towards a Unified View of Parameter-Efficient Transfer Learning
Junxian He
Chunting Zhou
Xuezhe Ma
Taylor Berg-Kirkpatrick
Graham Neubig
AAML
137
953
0
08 Oct 2021
Finetuned Language Models Are Zero-Shot Learners
Finetuned Language Models Are Zero-Shot Learners
Jason W. Wei
Maarten Bosma
Vincent Zhao
Kelvin Guu
Adams Wei Yu
Brian Lester
Nan Du
Andrew M. Dai
Quoc V. Le
ALMUQCV
246
3,789
0
03 Sep 2021
LoRA: Low-Rank Adaptation of Large Language Models
LoRA: Low-Rank Adaptation of Large Language Models
J. E. Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Lu Wang
Weizhu Chen
OffRLAI4TSAI4CEALMAIMat
502
10,526
0
17 Jun 2021
On the Expressive Power of Self-Attention Matrices
On the Expressive Power of Self-Attention Matrices
Valerii Likhosherstov
K. Choromanski
Adrian Weller
89
36
0
07 Jun 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
589
4,093
0
18 Apr 2021
Learning How to Ask: Querying LMs with Mixtures of Soft Prompts
Learning How to Ask: Querying LMs with Mixtures of Soft Prompts
Guanghui Qin
J. Eisner
63
549
0
14 Apr 2021
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li
Percy Liang
252
4,305
0
01 Jan 2021
WARP: Word-level Adversarial ReProgramming
WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan
Hrant Khachatrian
Jonathan May
AAML
334
353
0
01 Jan 2021
DART: Open-Domain Structured Data Record to Text Generation
DART: Open-Domain Structured Data Record to Text Generation
Linyong Nan
Dragomir R. Radev
Rui Zhang
Amrit Rau
Abhinand Sivaprasad
...
Y. Tan
Xi Lin
Caiming Xiong
R. Socher
Nazneen Rajani
60
202
0
06 Jul 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
638
4,921
0
23 Jan 2020
Attention is not not Explanation
Attention is not not Explanation
Sarah Wiegreffe
Yuval Pinter
XAIAAMLFAtt
124
914
0
13 Aug 2019
Attention is not Explanation
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
148
1,329
0
26 Feb 2019
Learning multiple visual domains with residual adapters
Learning multiple visual domains with residual adapters
Sylvestre-Alvise Rebuffi
Hakan Bilen
Andrea Vedaldi
OOD
176
939
0
22 May 2017
1