Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.19119
Cited By
Out-of-distribution Object Detection through Bayesian Uncertainty Estimation
29 October 2023
Tianhao Zhang
Shenglin Wang
N. Bouaynaya
R. Calinescu
Lyudmila Mihaylova
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Out-of-distribution Object Detection through Bayesian Uncertainty Estimation"
24 / 24 papers shown
Title
PViT: Prior-augmented Vision Transformer for Out-of-distribution Detection
Tianhao Zhang
Zhixiang Chen
Lyudmila Mihaylova
238
0
0
27 Oct 2024
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
Wenhai Wang
Jifeng Dai
Zhe Chen
Zhenhang Huang
Zhiqi Li
...
Tong Lu
Lewei Lu
Hongsheng Li
Xiaogang Wang
Yu Qiao
VLM
104
680
0
10 Nov 2022
Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors
Ali Harakeh
Steven L. Waslander
UQCV
68
41
0
13 Jan 2021
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Huayu Chen
A. Srinivas
Rui Qian
Nayeon Lee
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
286
987
0
13 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
65
225
0
20 Nov 2020
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
253
1,349
0
08 Oct 2020
Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder
Zhisheng Xiao
Qing Yan
Y. Amit
OODD
126
193
0
06 Mar 2020
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
126
276
0
25 Sep 2019
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
164
720
0
07 Jun 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
806
0
07 Feb 2019
Bounding Box Regression with Uncertainty for Accurate Object Detection
Yihui He
Chenchen Zhu
Jianren Wang
Marios Savvides
Xinming Zhang
ObjD
74
467
0
23 Sep 2018
Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift
Xiang Li
Shuo Chen
Xiaolin Hu
Jian Yang
69
309
0
16 Jan 2018
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
126
2,132
0
14 Nov 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
52
598
0
13 Apr 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML
3DV
113
3,013
0
27 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
332
4,700
0
15 Mar 2017
Statistical Inference for Model Parameters in Stochastic Gradient Descent
Xi Chen
Jason D. Lee
Xin T. Tong
Yichen Zhang
56
138
0
27 Oct 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
288
8,091
0
13 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
312
7,971
0
23 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
330
10,172
0
16 Mar 2016
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
202
1,510
0
08 Jun 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
419
43,234
0
11 Feb 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
908
0
17 Feb 2014
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
96
2,661
0
14 Nov 2013
1