Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.18574
Cited By
v1
v2 (latest)
Breaking the Trilemma of Privacy, Utility, Efficiency via Controllable Machine Unlearning
28 October 2023
Zheyuan Liu
Guangyao Dou
Yijun Tian
Chunhui Zhang
Eli Chien
Ziwei Zhu
MU
Re-assign community
ArXiv (abs)
PDF
HTML
Github (4★)
Papers citing
"Breaking the Trilemma of Privacy, Utility, Efficiency via Controllable Machine Unlearning"
22 / 22 papers shown
Title
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Siqiao Mu
Diego Klabjan
MU
110
4
0
15 Sep 2024
Threats, Attacks, and Defenses in Machine Unlearning: A Survey
Ziyao Liu
Huanyi Ye
Chen Chen
Yongsen Zheng
K. Lam
AAML
MU
95
31
0
20 Mar 2024
Graph Neural Prompting with Large Language Models
Yijun Tian
Huan Song
Zichen Wang
Haozhu Wang
Ziqing Hu
Fang Wang
Nitesh Chawla
Panpan Xu
AI4CE
88
48
0
27 Sep 2023
Unlearning Graph Classifiers with Limited Data Resources
Chao Pan
Eli Chien
O. Milenkovic
MU
57
33
0
06 Nov 2022
Evaluating Machine Unlearning via Epistemic Uncertainty
Alexander Becker
Thomas Liebig
UD
ELM
MU
91
36
0
23 Aug 2022
Heterogeneous Graph Masked Autoencoders
Yijun Tian
Kaiwen Dong
Chunhui Zhang
Chuxu Zhang
Nitesh Chawla
96
78
0
21 Aug 2022
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
114
457
0
15 Jul 2021
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari
Jayadev Acharya
Gautam Kamath
A. Suresh
FedML
MU
86
308
0
04 Mar 2021
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
194
165
0
24 Dec 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
113
119
0
22 Jul 2020
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
MU
70
271
0
06 Jul 2020
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
Soheil Feizi
TDI
125
235
0
25 Jun 2020
End-to-End Object Detection with Transformers
Nicolas Carion
Francisco Massa
Gabriel Synnaeve
Nicolas Usunier
Alexander Kirillov
Sergey Zagoruyko
ViT
3DV
PINN
415
13,048
0
26 May 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
345
373
0
24 Mar 2020
Deep Learning with Gaussian Differential Privacy
Zhiqi Bu
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
58
208
0
26 Nov 2019
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Stefano Soatto
CLL
MU
73
495
0
12 Nov 2019
Certified Data Removal from Machine Learning Models
Chuan Guo
Tom Goldstein
Awni Y. Hannun
Laurens van der Maaten
MU
110
446
0
08 Nov 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
125
494
0
12 Jun 2019
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
Borja Balle
Yu Wang
MLT
80
405
0
16 May 2018
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
213
2,894
0
14 Mar 2017
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
261
4,135
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
213
6,130
0
01 Jul 2016
1