ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.15709
  4. Cited By
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables

Causal Representation Learning Made Identifiable by Grouping of Observational Variables

24 October 2023
H. Morioka
Aapo Hyvarinen
    OOD
    CML
    BDL
ArXivPDFHTML

Papers citing "Causal Representation Learning Made Identifiable by Grouping of Observational Variables"

11 / 11 papers shown
Title
Modeling Unseen Environments with Language-guided Composable Causal Components in Reinforcement Learning
Modeling Unseen Environments with Language-guided Composable Causal Components in Reinforcement Learning
Xinyue Wang
Biwei Huang
OffRL
CML
27
0
0
13 May 2025
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
40
0
0
17 Apr 2025
Everything, Everywhere, All at Once: Is Mechanistic Interpretability Identifiable?
Everything, Everywhere, All at Once: Is Mechanistic Interpretability Identifiable?
Maxime Méloux
Silviu Maniu
François Portet
Maxime Peyrard
34
0
0
28 Feb 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Biwei Huang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Kun Zhang
CML
50
0
0
21 Jan 2025
Linear Causal Representation Learning from Unknown Multi-node
  Interventions
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
32
1
0
09 Jun 2024
On the Identification of Temporally Causal Representation with
  Instantaneous Dependence
On the Identification of Temporally Causal Representation with Instantaneous Dependence
Zijian Li
Yifan Shen
Kaitao Zheng
Ruichu Cai
Xiangchen Song
Mingming Gong
Zhengmao Zhu
Guan-Hong Chen
Kun Zhang
CML
29
5
0
24 May 2024
Multi-View Causal Representation Learning with Partial Observability
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
37
30
0
07 Nov 2023
Posterior Collapse and Latent Variable Non-identifiability
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang
David M. Blei
John P. Cunningham
CML
DRL
77
71
0
02 Jan 2023
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
111
258
0
29 Sep 2019
1