Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.14170
Cited By
Learning Invariant Molecular Representation in Latent Discrete Space
22 October 2023
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Invariant Molecular Representation in Latent Discrete Space"
18 / 18 papers shown
Title
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
67
2
0
03 Aug 2024
Graph Rationalization with Environment-based Augmentations
Gang Liu
Tong Zhao
Jiaxi Xu
Te Luo
Meng Jiang
OOD
45
82
0
06 Jun 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
110
73
0
24 Jan 2022
Causal Attention for Interpretable and Generalizable Graph Classification
Yongduo Sui
Xiang Wang
Jiancan Wu
Min Lin
Xiangnan He
Tat-Seng Chua
CML
OOD
44
154
0
30 Dec 2021
Molecular Contrastive Learning with Chemical Element Knowledge Graph
Yin Fang
Qiang Zhang
Haihong Yang
Xiang Zhuang
Shumin Deng
Wen Zhang
Minghai Qin
Zhuo Chen
Xiaohui Fan
Huajun Chen
21
110
0
01 Dec 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
39
258
0
11 Jun 2021
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
167
3,992
0
20 Nov 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
45
376
0
14 Oct 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
249
6,718
0
13 Jun 2020
Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19
D. Gysi
Ì. Valle
Marinka Zitnik
Asher Ameli
Xiao Gan
...
D. Ghiassian
R. Baron
Helia Sanchez
J. Loscalzo
Albert-László Barabási
24
438
0
15 Apr 2020
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
70
1,305
0
02 Apr 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
109
1,300
0
10 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
134
7,554
0
01 Oct 2018
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
143
4,928
0
02 Nov 2017
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
47
3,123
0
06 Jul 2016
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
318
9,418
0
28 May 2015
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
74
961
0
06 Jan 2015
1