ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.04519
  4. Cited By
SPADE: Sparsity-Guided Debugging for Deep Neural Networks

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

6 October 2023
Arshia Soltani Moakhar
Eugenia Iofinova
Elias Frantar
Dan Alistarh
ArXivPDFHTML

Papers citing "SPADE: Sparsity-Guided Debugging for Deep Neural Networks"

9 / 9 papers shown
Title
AtP*: An efficient and scalable method for localizing LLM behaviour to
  components
AtP*: An efficient and scalable method for localizing LLM behaviour to components
János Kramár
Tom Lieberum
Rohin Shah
Neel Nanda
KELM
45
42
0
01 Mar 2024
Sparse Linear Concept Discovery Models
Sparse Linear Concept Discovery Models
Konstantinos P. Panousis
Dino Ienco
Diego Marcos
31
15
0
21 Aug 2023
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
MILM
160
188
0
02 May 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
212
496
0
01 Nov 2022
Polysemanticity and Capacity in Neural Networks
Polysemanticity and Capacity in Neural Networks
Adam Scherlis
Kshitij Sachan
Adam Jermyn
Joe Benton
Buck Shlegeris
MILM
135
25
0
04 Oct 2022
Metrics for saliency map evaluation of deep learning explanation methods
Metrics for saliency map evaluation of deep learning explanation methods
T. Gomez
Thomas Fréour
Harold Mouchère
XAI
FAtt
69
41
0
31 Jan 2022
Accelerated Sparse Neural Training: A Provable and Efficient Method to
  Find N:M Transposable Masks
Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Itay Hubara
Brian Chmiel
Moshe Island
Ron Banner
S. Naor
Daniel Soudry
50
111
0
16 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
254
3,684
0
28 Feb 2017
1