Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.04519
Cited By
SPADE: Sparsity-Guided Debugging for Deep Neural Networks
6 October 2023
Arshia Soltani Moakhar
Eugenia Iofinova
Elias Frantar
Dan Alistarh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPADE: Sparsity-Guided Debugging for Deep Neural Networks"
9 / 9 papers shown
Title
AtP*: An efficient and scalable method for localizing LLM behaviour to components
János Kramár
Tom Lieberum
Rohin Shah
Neel Nanda
KELM
45
42
0
01 Mar 2024
Sparse Linear Concept Discovery Models
Konstantinos P. Panousis
Dino Ienco
Diego Marcos
26
15
0
21 Aug 2023
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
MILM
160
186
0
02 May 2023
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
212
496
0
01 Nov 2022
Polysemanticity and Capacity in Neural Networks
Adam Scherlis
Kshitij Sachan
Adam Jermyn
Joe Benton
Buck Shlegeris
MILM
135
25
0
04 Oct 2022
Metrics for saliency map evaluation of deep learning explanation methods
T. Gomez
Thomas Fréour
Harold Mouchère
XAI
FAtt
69
41
0
31 Jan 2022
Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Itay Hubara
Brian Chmiel
Moshe Island
Ron Banner
S. Naor
Daniel Soudry
50
110
0
16 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,684
0
28 Feb 2017
1