Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.03652
Cited By
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics
5 October 2023
J. Fuhg
Reese E. Jones
N. Bouklas
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics"
8 / 8 papers shown
Title
Input Specific Neural Networks
Asghar A. Jadoon
D. Thomas Seidl
Reese E. Jones
J. Fuhg
PINN
50
0
0
01 Mar 2025
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
57
1
0
12 Feb 2025
Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models
G. A. Padmanabha
J. Fuhg
C. Safta
Reese E. Jones
N. Bouklas
47
4
0
30 Jun 2024
A review on data-driven constitutive laws for solids
J. Fuhg
G. A. Padmanabha
N. Bouklas
B. Bahmani
WaiChing Sun
Nikolaos N. Vlassis
Moritz Flaschel
P. Carrara
L. Lorenzis
AI4CE
AILaw
31
32
0
06 May 2024
Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response
Ravi G. Patel
C. Safta
Reese E. Jones
AI4CE
40
1
0
05 Apr 2024
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
601
0
22 Sep 2016
1