Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.03652
Cited By
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics
5 October 2023
J. Fuhg
Reese E. Jones
N. Bouklas
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics"
4 / 4 papers shown
Title
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
57
1
0
12 Feb 2025
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
1