ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03054
  4. Cited By
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel

Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel

4 October 2023
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
ArXivPDFHTML

Papers citing "Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel"

24 / 24 papers shown
Title
Fast Summation of Radial Kernels via QMC Slicing
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
76
5
0
02 Oct 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
88
2
0
29 Jul 2024
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
48
27
0
19 May 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
56
22
0
26 Apr 2023
An Approximation Theory Framework for Measure-Transport Sampling
  Algorithms
An Approximation Theory Framework for Measure-Transport Sampling Algorithms
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef M. Marzouk
A. Sagiv
OT
80
17
0
27 Feb 2023
Diffusion Posterior Sampling for General Noisy Inverse Problems
Diffusion Posterior Sampling for General Noisy Inverse Problems
Hyungjin Chung
Jeongsol Kim
Michael T. McCann
M. Klasky
J. C. Ye
DiffM
111
844
0
29 Sep 2022
PatchNR: Learning from Very Few Images by Patch Normalizing Flow
  Regularization
PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization
Fabian Altekrüger
Alexander Denker
Paul Hagemann
J. Hertrich
Peter Maass
Gabriele Steidl
MedIm
50
26
0
24 May 2022
Revisiting Sliced Wasserstein on Images: From Vectorization to
  Convolution
Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution
Khai Nguyen
Nhat Ho
50
25
0
04 Apr 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
123
57
0
04 Dec 2021
Conditional Image Generation with Score-Based Diffusion Models
Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis
Jan Stanczuk
Carola-Bibiane Schönlieb
Christian Etmann
DiffM
40
192
0
26 Nov 2021
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
  Viewpoint
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
71
39
0
23 Sep 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
72
57
0
01 Jun 2021
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffM
OT
104
467
0
01 Jun 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
335
6,480
0
26 Nov 2020
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
Andreas Lugmayr
Martin Danelljan
Luc Van Gool
Radu Timofte
SupR
DRL
83
360
0
25 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
237
1,151
0
16 Jun 2020
Generalized Sliced Wasserstein Distances
Generalized Sliced Wasserstein Distances
Soheil Kolouri
Kimia Nadjahi
Umut Simsekli
Roland Badeau
Gustavo K. Rohde
50
300
0
01 Feb 2019
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
57
493
0
14 Aug 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,883
0
25 Aug 2017
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
244
8,408
0
28 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Equivalence of distance-based and RKHS-based statistics in hypothesis
  testing
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
Dino Sejdinovic
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
215
685
0
25 Jul 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
530
0
03 Mar 2010
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
231
2,360
0
15 May 2008
1