ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02854
  4. Cited By
Multi-Domain Causal Representation Learning via Weak Distributional
  Invariances

Multi-Domain Causal Representation Learning via Weak Distributional Invariances

4 October 2023
Kartik Ahuja
Amin Mansouri
Yixin Wang
    CML
    OOD
ArXivPDFHTML

Papers citing "Multi-Domain Causal Representation Learning via Weak Distributional Invariances"

11 / 11 papers shown
Title
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
57
0
0
27 Feb 2025
Identifiability Guarantees for Causal Disentanglement from Purely
  Observational Data
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
51
1
0
31 Oct 2024
Linear Causal Representation Learning from Unknown Multi-node
  Interventions
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
35
1
0
09 Jun 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
46
13
0
13 Mar 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
91
21
0
14 Feb 2024
Learning Causal Representations from General Environments:
  Identifiability and Intrinsic Ambiguity
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity
Jikai Jin
Vasilis Syrgkanis
CML
30
5
0
21 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
23
5
0
05 Nov 2023
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sébastien Bubeck
Varun Chandrasekaran
Ronen Eldan
J. Gehrke
Eric Horvitz
...
Scott M. Lundberg
Harsha Nori
Hamid Palangi
Marco Tulio Ribeiro
Yi Zhang
ELM
AI4MH
AI4CE
ALM
325
2,232
0
22 Mar 2023
DALL-E 2 Fails to Reliably Capture Common Syntactic Processes
DALL-E 2 Fails to Reliably Capture Common Syntactic Processes
Evelina Leivada
Elliot Murphy
G. Marcus
138
37
0
23 Oct 2022
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
177
9,342
0
28 May 2015
1