ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02264
23
14

Generalizable Long-Horizon Manipulations with Large Language Models

3 October 2023
Haoyu Zhou
Mingyu Ding
Weikun Peng
Masayoshi Tomizuka
Lin Shao
Chuang Gan
    LM&Ro
ArXivPDFHTML
Abstract

This work introduces a framework harnessing the capabilities of Large Language Models (LLMs) to generate primitive task conditions for generalizable long-horizon manipulations with novel objects and unseen tasks. These task conditions serve as guides for the generation and adjustment of Dynamic Movement Primitives (DMP) trajectories for long-horizon task execution. We further create a challenging robotic manipulation task suite based on Pybullet for long-horizon task evaluation. Extensive experiments in both simulated and real-world environments demonstrate the effectiveness of our framework on both familiar tasks involving new objects and novel but related tasks, highlighting the potential of LLMs in enhancing robotic system versatility and adaptability. Project website: https://object814.github.io/Task-Condition-With-LLM/

View on arXiv
Comments on this paper