Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.01753
Cited By
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
3 October 2023
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery"
21 / 21 papers shown
Title
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Benjamin Herdeanu
Juan Nathaniel
Carla Roesch
Jatan Buch
Gregor Ramien
Johannes Haux
Pierre Gentine
CML
AI4CE
90
0
0
22 May 2025
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
115
1
0
21 Mar 2025
GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality
Zehao Liu
Mengzhou Gao
Pengfei Jiao
CML
AI4TS
79
3
0
23 Jan 2025
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
116
0
0
25 Oct 2024
CUTS: Neural Causal Discovery from Irregular Time-Series Data
Yuxiao Cheng
Runzhao Yang
Tingxiong Xiao
Zongren Li
J. Suo
K. He
Qionghai Dai
OOD
BDL
AI4TS
CML
68
28
0
15 Feb 2023
Rhino: Deep Causal Temporal Relationship Learning With History-dependent Noise
Wenbo Gong
Joel Jennings
Chen Zhang
Nick Pawlowski
AI4TS
CML
60
26
0
26 Oct 2022
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
57
72
0
22 Jul 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
115
303
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
68
142
0
26 Feb 2021
High-recall causal discovery for autocorrelated time series with latent confounders
Andreas Gerhardus
J. Runge
CML
AI4TS
59
102
0
03 Jul 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
100
131
0
18 Jun 2020
Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
Jakob Runge
69
193
0
07 Mar 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
209
1,713
0
05 Dec 2019
Economy Statistical Recurrent Units For Inferring Nonlinear Granger Causality
Saurabh Khanna
Vincent Y. F. Tan
AI4TS
62
72
0
22 Nov 2019
Graph WaveNet for Deep Spatial-Temporal Graph Modeling
Zonghan Wu
Shirui Pan
Guodong Long
Jing Jiang
Chengqi Zhang
GNN
AI4TS
92
2,176
0
31 May 2019
GRATIS: GeneRAting TIme Series with diverse and controllable characteristics
Yanfei Kang
Rob J. Hyndman
Feng Li
AI4TS
65
106
0
07 Mar 2019
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
Cristóbal Esteban
Stephanie L. Hyland
Gunnar Rätsch
GAN
SyDa
MedIm
112
791
0
08 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
Samy Bengio
Oriol Vinyals
Navdeep Jaitly
Noam M. Shazeer
152
2,038
0
09 Jun 2015
Learning Bayesian Networks with the bnlearn R Package
M. Scutari
BDL
174
1,736
0
26 Aug 2009
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
235
2,365
0
15 May 2008
1