Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.16578
Cited By
v1
v2 (latest)
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
28 September 2023
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Jia Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning"
5 / 5 papers shown
Title
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
82
3
0
10 Oct 2024
KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory
Roman Remme
Tobias Kaczun
Maximilian Scheurer
A. Dreuw
Fred Hamprecht
63
11
0
08 May 2023
DeePKS: a comprehensive data-driven approach towards chemically accurate density functional theory
Yixiao Chen
Linfeng Zhang
Han Wang
E. Weinan
55
72
0
01 Aug 2020
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
38
405
0
04 Dec 2018
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
69
607
0
09 Sep 2016
1