ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.15421
  4. Cited By
Deep Learning in Deterministic Computational Mechanics

Deep Learning in Deterministic Computational Mechanics

27 September 2023
L. Herrmann
Stefan Kollmannsberger
    AI4CE
    PINN
ArXivPDFHTML

Papers citing "Deep Learning in Deterministic Computational Mechanics"

23 / 23 papers shown
Title
ShipHullGAN: A generic parametric modeller for ship hull design using
  deep convolutional generative model
ShipHullGAN: A generic parametric modeller for ship hull design using deep convolutional generative model
Shahroz Khan
K. Goucher-Lambert
Konstantino Kostas
P. Kaklis
GAN
28
27
0
29 Apr 2023
Transfer Learning Enhanced Full Waveform Inversion
Transfer Learning Enhanced Full Waveform Inversion
Stefan Kollmannsberger
Divya Singh
L. Herrmann
18
5
0
22 Feb 2023
Spiking neural networks for nonlinear regression
Spiking neural networks for nonlinear regression
Alexander Henkes
Jason Eshraghian
Henning Wessels
31
26
0
06 Oct 2022
Numerical Approximation of Partial Differential Equations by a Variable
  Projection Method with Artificial Neural Networks
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
32
17
0
24 Jan 2022
A Comparison of Neural Network Architectures for Data-Driven
  Reduced-Order Modeling
A Comparison of Neural Network Architectures for Data-Driven Reduced-Order Modeling
A. Gruber
M. Gunzburger
L. Ju
Zhu Wang
GNN
27
62
0
05 Oct 2021
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary
  Differential Equations
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations
Vahidullah Tac
F. Sahli Costabal
A. B. Tepole
AI4CE
31
69
0
03 Oct 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
59
0
15 Sep 2021
A Robust Deep Learning Workflow to Predict Multiphase Flow Behavior
  during Geological CO2 Sequestration Injection and Post-Injection Periods
A Robust Deep Learning Workflow to Predict Multiphase Flow Behavior during Geological CO2 Sequestration Injection and Post-Injection Periods
B. Yan
Bailian Chen
D. Harp
R. Pawar
AI4CE
23
91
0
15 Jul 2021
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
222
0
26 Apr 2021
Speeding up Computational Morphogenesis with Online Neural Synthetic
  Gradients
Speeding up Computational Morphogenesis with Online Neural Synthetic Gradients
Yuyu Zhang
Heng Chi
Binghong Chen
T. Tang
L. Mirabella
Le Song
G. Paulino
AI4CE
25
5
0
25 Apr 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
126
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,282
0
18 Oct 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
122
508
0
11 Mar 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
422
0
10 Mar 2020
TopologyGAN: Topology Optimization Using Generative Adversarial Networks
  Based on Physical Fields Over the Initial Domain
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
Zhenguo Nie
Tong Lin
Haoliang Jiang
L. Kara
AI4CE
95
168
0
05 Mar 2020
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical
  Response Prediction
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical Response Prediction
Houpu Yao
Yi Gao
Yongming Liu
AI4CE
49
66
0
31 Jan 2020
Stochastic seismic waveform inversion using generative adversarial
  networks as a geological prior
Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
L. Mosser
O. Dubrule
M. Blunt
GAN
AI4CE
84
206
0
10 Jun 2018
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
173
597
0
22 Sep 2016
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
160
1,122
0
25 Jul 2012
1