ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.15251
  4. Cited By
VPA: Fully Test-Time Visual Prompt Adaptation

VPA: Fully Test-Time Visual Prompt Adaptation

26 September 2023
Jiachen Sun
Mark Ibrahim
Melissa Hall
Ivan Evtimov
Z. Morley Mao
Cristian Canton Ferrer
C. Hazirbas
    VLM
ArXivPDFHTML

Papers citing "VPA: Fully Test-Time Visual Prompt Adaptation"

34 / 34 papers shown
Title
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
Xiaoxing Hu
Ziyang Gong
Yansen Wang
Yuru Jia
Gen Luo
Xue Yang
376
0
0
08 Apr 2025
Model Adaptation: Unsupervised Domain Adaptation without Source Data
Model Adaptation: Unsupervised Domain Adaptation without Source Data
Rui Li
Qianfen Jiao
Wenming Cao
Hau-San Wong
Si Wu
OOD
210
488
0
26 Feb 2025
Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
  Models
Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models
Manli Shu
Weili Nie
De-An Huang
Zhiding Yu
Tom Goldstein
Anima Anandkumar
Chaowei Xiao
VLM
VPVLM
212
302
0
15 Sep 2022
Robustifying Vision Transformer without Retraining from Scratch by
  Test-Time Class-Conditional Feature Alignment
Robustifying Vision Transformer without Retraining from Scratch by Test-Time Class-Conditional Feature Alignment
Takeshi Kojima
Yutaka Matsuo
Yusuke Iwasawa
70
28
0
28 Jun 2022
Exploring Visual Prompts for Adapting Large-Scale Models
Exploring Visual Prompts for Adapting Large-Scale Models
Hyojin Bahng
Ali Jahanian
S. Sankaranarayanan
Phillip Isola
VLM
VPVLM
LRM
64
271
0
31 Mar 2022
Conditional Prompt Learning for Vision-Language Models
Conditional Prompt Learning for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VLM
CLIP
VPVLM
105
1,348
0
10 Mar 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
111
671
0
21 Feb 2022
On Adversarial Robustness of Trajectory Prediction for Autonomous
  Vehicles
On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles
Qingzhao Zhang
Shengtuo Hu
Jiachen Sun
Qi Alfred Chen
Z. Morley Mao
AAML
78
134
0
13 Jan 2022
iBOT: Image BERT Pre-Training with Online Tokenizer
iBOT: Image BERT Pre-Training with Online Tokenizer
Jinghao Zhou
Chen Wei
Huiyu Wang
Wei Shen
Cihang Xie
Alan Yuille
Tao Kong
76
733
0
15 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
439
7,731
0
11 Nov 2021
PPT: Pre-trained Prompt Tuning for Few-shot Learning
PPT: Pre-trained Prompt Tuning for Few-shot Learning
Yuxian Gu
Xu Han
Zhiyuan Liu
Minlie Huang
VLM
86
416
0
09 Sep 2021
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
119
724
0
04 Sep 2021
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
466
2,394
0
02 Sep 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLM
SyDa
191
3,964
0
28 Jul 2021
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
  Restoration
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration
Cian Eastwood
I. Mason
Christopher K. I. Williams
Bernhard Schölkopf
TTA
63
51
0
12 Jul 2021
PTR: Prompt Tuning with Rules for Text Classification
PTR: Prompt Tuning with Rules for Text Classification
Xu Han
Weilin Zhao
Ning Ding
Zhiyuan Liu
Maosong Sun
VLM
96
524
0
24 May 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
528
4,032
0
18 Apr 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
172
1,428
0
14 Dec 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
247
4,047
0
20 Nov 2020
Domain Adaptation without Source Data
Domain Adaptation without Source Data
Youngeun Kim
Donghyeon Cho
Kyeongtak Han
Priyadarshini Panda
Sungeun Hong
TTA
91
177
0
03 Jul 2020
Towards Robust LiDAR-based Perception in Autonomous Driving: General
  Black-box Adversarial Sensor Attack and Countermeasures
Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack and Countermeasures
Jiachen Sun
Yulong Cao
Qi Alfred Chen
Z. Morley Mao
AAML
67
241
0
30 Jun 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
92
480
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
320
1,732
0
29 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OOD
AI4TS
85
247
0
19 Jun 2020
Universal Source-Free Domain Adaptation
Universal Source-Free Domain Adaptation
Jogendra Nath Kundu
Naveen Venkat
V. RahulM.
R. Venkatesh Babu
VLM
TTA
61
342
0
09 Apr 2020
Do We Really Need to Access the Source Data? Source Hypothesis Transfer
  for Unsupervised Domain Adaptation
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
Jian Liang
Dapeng Hu
Jiashi Feng
95
1,241
0
20 Feb 2020
FixMatch: Simplifying Semi-Supervised Learning with Consistency and
  Confidence
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
155
3,545
0
21 Jan 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
217
3,485
0
30 Sep 2019
Test-Time Training with Self-Supervision for Generalization under
  Distribution Shifts
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
76
94
0
29 Sep 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
195
1,469
0
16 Jul 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
111
1,714
0
13 Feb 2019
VisDA: The Visual Domain Adaptation Challenge
VisDA: The Visual Domain Adaptation Challenge
Xingchao Peng
Ben Usman
Neela Kaushik
Judy Hoffman
Dequan Wang
Kate Saenko
OOD
83
800
0
18 Oct 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
254
8,550
0
16 Aug 2016
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
450
43,277
0
11 Feb 2015
1