Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.13516
Cited By
InSpaceType: Reconsider Space Type in Indoor Monocular Depth Estimation
24 September 2023
Cho-Ying Wu
Quankai Gao
Chin-Cheng Hsu
Te-Lin Wu
Jing-Wen Chen
Ulrich Neumann
MDE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"InSpaceType: Reconsider Space Type in Indoor Monocular Depth Estimation"
7 / 7 papers shown
Title
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Lihe Yang
Bingyi Kang
Zilong Huang
Xiaogang Xu
Jiashi Feng
Hengshuang Zhao
VLM
149
706
0
19 Jan 2024
Revealing the Dark Secrets of Masked Image Modeling
Zhenda Xie
Zigang Geng
Jingcheng Hu
Zheng-Wei Zhang
Han Hu
Yue Cao
VLM
188
105
0
26 May 2022
Toward Practical Monocular Indoor Depth Estimation
Cho-Ying Wu
Jialiang Wang
Michael Hall
Ulrich Neumann
Shuochen Su
3DV
MDE
43
62
0
04 Dec 2021
PLNet: Plane and Line Priors for Unsupervised Indoor Depth Estimation
Hualie Jiang
Laiyan Ding
Junjie Hu
Rui Huang
3DPC
SSL
MDE
51
19
0
12 Oct 2021
Scene Completeness-Aware Lidar Depth Completion for Driving Scenario
Cho-Ying Wu
Ulrich Neumann
3DV
22
9
0
15 Mar 2020
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
Boyan Zhou
Quan Cui
Xiu-Shen Wei
Zhao-Min Chen
250
782
0
05 Dec 2019
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Mingming Gong
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
188
1,707
0
06 Jun 2018
1