ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13276
  4. Cited By
Discwise Active Learning for LiDAR Semantic Segmentation

Discwise Active Learning for LiDAR Semantic Segmentation

23 September 2023
Ozan Unal
Dengxin Dai
Ali Tamer Unal
Luc Van Gool
ArXivPDFHTML

Papers citing "Discwise Active Learning for LiDAR Semantic Segmentation"

7 / 7 papers shown
Title
Bayesian Self-Training for Semi-Supervised 3D Segmentation
Bayesian Self-Training for Semi-Supervised 3D Segmentation
Ozan Unal
Daniel Gehrig
Luc Van Gool
3DPC
3DV
37
0
0
12 Sep 2024
MILAN: Milli-Annotations for Lidar Semantic Segmentation
MILAN: Milli-Annotations for Lidar Semantic Segmentation
Nermin Samet
Gilles Puy
Oriane Siméoni
Renaud Marlet
3DPC
32
0
0
22 Jul 2024
2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
  Segmentation
2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic Segmentation
Ozan Unal
Dengxin Dai
Lukas Hoyer
Y. Can
Luc Van Gool
3DPC
18
5
0
27 Nov 2023
Guided Point Contrastive Learning for Semi-supervised Point Cloud
  Semantic Segmentation
Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation
Li Jiang
Shaoshuai Shi
Zhuotao Tian
Xin Lai
Shu Liu
Chi-Wing Fu
Jiaya Jia
SSL
3DPC
126
115
0
15 Oct 2021
Active Learning for Improved Semi-Supervised Semantic Segmentation in
  Satellite Images
Active Learning for Improved Semi-Supervised Semantic Segmentation in Satellite Images
S. Desai
Debasmita Ghose
35
29
0
15 Oct 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1