Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.12482
Cited By
State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding
21 September 2023
Devleena Das
Sonia Chernova
Been Kim
LRM
LLMAG
Re-assign community
ArXiv
PDF
HTML
Papers citing
"State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding"
15 / 15 papers shown
Title
Explainable Reinforcement Learning Agents Using World Models
Madhuri Singh
Amal Alabdulkarim
Gennie Mansi
Mark O. Riedl
19
0
0
12 May 2025
Neuro-Symbolic Generation of Explanations for Robot Policies with Weighted Signal Temporal Logic
Mikihisa Yuasa
R. Sreenivas
Huy T. Tran
40
0
0
30 Apr 2025
Bridging the Gap between Expert and Language Models: Concept-guided Chess Commentary Generation and Evaluation
Jaechang Kim
Jinmin Goh
Inseok Hwang
Jaewoong Cho
Jungseul Ok
ELM
28
1
0
28 Oct 2024
Robot Behavior Personalization from Sparse User Feedback
Maithili Patel
Sonia Chernova
36
2
0
25 Oct 2024
Social Learning through Interactions with Other Agents: A Survey
Dylan Hillier
Cheston Tan
Jing Jiang
40
0
0
31 Jul 2024
Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
Yuji Cao
Huan Zhao
Yuheng Cheng
Ting Shu
Guolong Liu
Gaoqi Liang
Junhua Zhao
Yun Li
LLMAG
KELM
OffRL
LM&Ro
35
49
0
30 Mar 2024
A survey on Concept-based Approaches For Model Improvement
Avani Gupta
P. J. Narayanan
LRM
29
5
0
21 Mar 2024
Inferring Belief States in Partially-Observable Human-Robot Teams
Jack Kolb
K. Feigh
28
0
0
18 Mar 2024
Natural Language Reinforcement Learning
Xidong Feng
Bo Liu
Mengyue Yang
Ziyan Wang
Girish A. Koushiks
Yali Du
Ying Wen
Jun Wang
OffRL
35
3
0
11 Feb 2024
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Samira Ebrahimi Kahou
32
24
0
18 Nov 2023
Autonomous Capability Assessment of Sequential Decision-Making Systems in Stochastic Settings (Extended Version)
Pulkit Verma
Rushang Karia
Siddharth Srivastava
24
10
0
07 Jun 2023
Experiential Explanations for Reinforcement Learning
Amal Alabdulkarim
Madhuri Singh
Gennie Mansi
Kaely Hall
Mark O. Riedl
Mark O. Riedl
OffRL
38
2
0
10 Oct 2022
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
...
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio'
M. Jamnik
79
52
0
19 Sep 2022
Semantic-Based Explainable AI: Leveraging Semantic Scene Graphs and Pairwise Ranking to Explain Robot Failures
Devleena Das
Sonia Chernova
28
20
0
08 Aug 2021
Bridging the Gap: Providing Post-Hoc Symbolic Explanations for Sequential Decision-Making Problems with Inscrutable Representations
S. Sreedharan
Utkarsh Soni
Mudit Verma
Siddharth Srivastava
S. Kambhampati
73
30
0
04 Feb 2020
1