ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10301
  4. Cited By
Prominent Roles of Conditionally Invariant Components in Domain
  Adaptation: Theory and Algorithms

Prominent Roles of Conditionally Invariant Components in Domain Adaptation: Theory and Algorithms

19 September 2023
Keru Wu
Yuansi Chen
Wooseok Ha
Ting Yu
    CML
ArXivPDFHTML

Papers citing "Prominent Roles of Conditionally Invariant Components in Domain Adaptation: Theory and Algorithms"

22 / 22 papers shown
Title
Deep Transfer Learning: Model Framework and Error Analysis
Deep Transfer Learning: Model Framework and Error Analysis
Yuling Jiao
Huazhen Lin
Yuchen Luo
Jerry Zhijian Yang
71
1
0
12 Oct 2024
Estimating and Explaining Model Performance When Both Covariates and
  Labels Shift
Estimating and Explaining Model Performance When Both Covariates and Labels Shift
Lingjiao Chen
Matei A. Zaharia
James Zou
42
17
0
18 Sep 2022
Counterfactual Invariance to Spurious Correlations: Why and How to Pass
  Stress Tests
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
OOD
46
92
0
31 May 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
163
1,418
0
14 Dec 2020
Domain Adaptation with Conditional Distribution Matching and Generalized
  Label Shift
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Rémi Tachet des Combes
Han Zhao
Yu Wang
Geoffrey J. Gordon
OOD
AAML
VLM
62
186
0
10 Mar 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
67
1,229
0
20 Nov 2019
Support and Invertibility in Domain-Invariant Representations
Support and Invertibility in Domain-Invariant Representations
Fredrik D. Johansson
David Sontag
Rajesh Ranganath
55
162
0
08 Mar 2019
Rethinking ImageNet Pre-training
Rethinking ImageNet Pre-training
Kaiming He
Ross B. Girshick
Piotr Dollár
VLM
SSeg
114
1,081
0
21 Nov 2018
Optimal estimation of Gaussian mixtures via denoised method of moments
Optimal estimation of Gaussian mixtures via denoised method of moments
Yihong Wu
Pengkun Yang
57
75
0
19 Jul 2018
Confounding variables can degrade generalization performance of
  radiological deep learning models
Confounding variables can degrade generalization performance of radiological deep learning models
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
OOD
64
1,165
0
02 Jul 2018
Algorithms and Theory for Multiple-Source Adaptation
Algorithms and Theory for Multiple-Source Adaptation
Judy Hoffman
M. Mohri
Ningshan Zhang
OOD
54
171
0
20 May 2018
Detecting and Correcting for Label Shift with Black Box Predictors
Detecting and Correcting for Label Shift with Black Box Predictors
Zachary Chase Lipton
Yu Wang
Alex Smola
OOD
53
548
0
12 Feb 2018
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
132
2,992
0
08 Nov 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
781
11,793
0
09 Mar 2017
Adversarial Discriminative Domain Adaptation
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GAN
OOD
247
4,646
0
17 Feb 2017
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
278
4,554
0
13 Nov 2016
Statistics of Robust Optimization: A Generalized Empirical Likelihood
  Approach
Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
John C. Duchi
Peter Glynn
Hongseok Namkoong
99
321
0
11 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
675
36,599
0
25 Aug 2016
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
86
3,123
0
06 Jul 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
357
9,418
0
28 May 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
104
961
0
06 Jan 2015
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
79
604
0
27 Jun 2012
1