ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.09982
  4. Cited By
Introspective Deep Metric Learning

Introspective Deep Metric Learning

11 September 2023
Cheng-Hao Wang
Wenzhao Zheng
Zheng Hua Zhu
Jie Zhou
Jiwen Lu
    UQCV
ArXivPDFHTML

Papers citing "Introspective Deep Metric Learning"

46 / 46 papers shown
Title
OPERA: Omni-Supervised Representation Learning with Hierarchical
  Supervisions
OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions
Cheng-Hao Wang
Wenzhao Zheng
Zhengbiao Zhu
Jie Zhou
Jiwen Lu
SSL
AI4TS
67
4
0
11 Oct 2022
Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
  Framework
Use All The Labels: A Hierarchical Multi-Label Contrastive Learning Framework
Shu Zhen Zhang
Ran Xu
Caiming Xiong
Chetan Ramaiah
SSL
44
69
0
27 Apr 2022
Out-of-Distribution Detection with Deep Nearest Neighbors
Out-of-Distribution Detection with Deep Nearest Neighbors
Yiyou Sun
Yifei Ming
Xiaojin Zhu
Yixuan Li
OODD
166
512
0
13 Apr 2022
CP2: Copy-Paste Contrastive Pretraining for Semantic Segmentation
CP2: Copy-Paste Contrastive Pretraining for Semantic Segmentation
Feng Wang
Huiyu Wang
Chen Wei
Alan Yuille
Wei Shen
SSL
VLM
48
35
0
22 Mar 2022
Non-isotropy Regularization for Proxy-based Deep Metric Learning
Non-isotropy Regularization for Proxy-based Deep Metric Learning
Karsten Roth
Oriol Vinyals
Zeynep Akata
74
39
0
16 Mar 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
107
5,137
0
10 Jan 2022
ResNet strikes back: An improved training procedure in timm
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
239
492
0
01 Oct 2021
Improving Deep Metric Learning by Divide and Conquer
Improving Deep Metric Learning by Divide and Conquer
A. Sanakoyeu
Pingchuan Ma
Vadim Tschernezki
Bjorn Ommer
63
14
0
09 Sep 2021
Towards Interpretable Deep Metric Learning with Structural Matching
Towards Interpretable Deep Metric Learning with Structural Matching
Wenliang Zhao
Yongming Rao
Ziyi Wang
Jiwen Lu
Jie Zhou
FedML
47
47
0
12 Aug 2021
DetCo: Unsupervised Contrastive Learning for Object Detection
DetCo: Unsupervised Contrastive Learning for Object Detection
Enze Xie
Jian Ding
Wenhai Wang
Xiaohang Zhan
Hang Xu
Peize Sun
Zhenguo Li
Ping Luo
71
321
0
09 Feb 2021
Probabilistic Embeddings for Cross-Modal Retrieval
Probabilistic Embeddings for Cross-Modal Retrieval
Sanghyuk Chun
Seong Joon Oh
Rafael Sampaio de Rezende
Yannis Kalantidis
Diane Larlus
UQCV
459
205
0
13 Jan 2021
Few-Shot Classification with Feature Map Reconstruction Networks
Few-Shot Classification with Feature Map Reconstruction Networks
Davis Wertheimer
Luming Tang
B. Hariharan
73
238
0
02 Dec 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
242
4,036
0
20 Nov 2020
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim
Wonho Choo
Hyun Oh Song
AAML
73
389
0
15 Sep 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
325
6,773
0
13 Jun 2020
SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better
  Regularization
SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization
A. Uddin
Sirazam Monira
Wheemyung Shin
TaeChoong Chung
Sung-Ho Bae
44
228
0
02 Jun 2020
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component
  Analysis
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis
Eu Wern Teh
Terrance Devries
Graham W. Taylor
55
158
0
02 Apr 2020
Revisiting Pose-Normalization for Fine-Grained Few-Shot Recognition
Revisiting Pose-Normalization for Fine-Grained Few-Shot Recognition
Luming Tang
Davis Wertheimer
B. Hariharan
62
49
0
01 Apr 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
132
476
0
18 Mar 2020
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Yifan Sun
Changmao Cheng
Yuhan Zhang
Chi Zhang
Liang Zheng
Zhongdao Wang
Yichen Wei
83
857
0
25 Feb 2020
View-Invariant Probabilistic Embedding for Human Pose
View-Invariant Probabilistic Embedding for Human Pose
Jennifer J. Sun
Jiaping Zhao
Liang-Chieh Chen
Florian Schroff
Hartwig Adam
Ting Liu
46
77
0
02 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
153
12,050
0
13 Nov 2019
Metric Learning With HORDE: High-Order Regularizer for Deep Embeddings
Metric Learning With HORDE: High-Order Regularizer for Deep Embeddings
Pierre Jacob
David Picard
A. Histace
Edouard Klein
DML
56
59
0
07 Aug 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
602
4,766
0
13 May 2019
Probabilistic Face Embeddings
Probabilistic Face Embeddings
Yichun Shi
Anil K. Jain
CVBM
60
310
0
21 Apr 2019
Improved Embeddings with Easy Positive Triplet Mining
Improved Embeddings with Easy Positive Triplet Mining
Hong Xuan
Abby Stylianou
Robert Pless
73
133
0
08 Apr 2019
Learning to Cluster Faces on an Affinity Graph
Learning to Cluster Faces on an Affinity Graph
Lei Yang
Xiaohang Zhan
Dapeng Chen
Junjie Yan
Chen Change Loy
Dahua Lin
3DH
CVBM
GNN
45
125
0
04 Apr 2019
DropBlock: A regularization method for convolutional networks
DropBlock: A regularization method for convolutional networks
Golnaz Ghiasi
Nayeon Lee
Quoc V. Le
105
914
0
30 Oct 2018
Deep Randomized Ensembles for Metric Learning
Deep Randomized Ensembles for Metric Learning
Hong Xuan
Richard Souvenir
Robert Pless
UQCV
OOD
72
102
0
13 Aug 2018
Attention-based Ensemble for Deep Metric Learning
Attention-based Ensemble for Deep Metric Learning
Wonsik Kim
Bhavya Goyal
Kunal Chawla
Jungmin Lee
Keunjoo Kwon
FedML
68
227
0
02 Apr 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
139
1,424
0
24 Mar 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
65
451
0
28 Feb 2018
Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
M. Opitz
Georg Waltner
Horst Possegger
Horst Bischof
FedML
OOD
77
166
0
15 Jan 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
264
9,743
0
25 Oct 2017
Sampling Matters in Deep Embedding Learning
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
92
922
0
23 Jun 2017
Beyond triplet loss: a deep quadruplet network for person
  re-identification
Beyond triplet loss: a deep quadruplet network for person re-identification
Weihua Chen
Xiaotang Chen
Jianguo Zhang
Kaiqi Huang
78
1,140
0
06 Apr 2017
Smart Mining for Deep Metric Learning
Smart Mining for Deep Metric Learning
Ben Harwood
B. V. Kumar
G. Carneiro
Ian Reid
Tom Drummond
55
350
0
05 Apr 2017
No Fuss Distance Metric Learning using Proxies
No Fuss Distance Metric Learning using Proxies
Yair Movshovitz-Attias
Alexander Toshev
Thomas Leung
Sergey Ioffe
Saurabh Singh
75
640
0
21 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
326
4,700
0
15 Mar 2017
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
182
2,352
0
30 Mar 2016
Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding
Hyun Oh Song
Yu Xiang
Stefanie Jegelka
Silvio Savarese
FedML
SSL
DML
89
1,641
0
19 Nov 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
328
13,123
0
12 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
407
43,234
0
11 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
388
43,589
0
17 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.3K
39,472
0
01 Sep 2014
Learning Fine-grained Image Similarity with Deep Ranking
Learning Fine-grained Image Similarity with Deep Ranking
Jiang Wang
Yang Song
Thomas Leung
C. Rosenberg
Jingbin Wang
James Philbin
Bo Chen
Ying Nian Wu
SSL
103
1,317
0
17 Apr 2014
1