ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.09068
  4. Cited By
Recovering Missing Node Features with Local Structure-based Embeddings

Recovering Missing Node Features with Local Structure-based Embeddings

16 September 2023
Victor M. Tenorio
Madeline Navarro
Santiago Segarra
Antonio G. Marques
ArXiv (abs)PDFHTML

Papers citing "Recovering Missing Node Features with Local Structure-based Embeddings"

16 / 16 papers shown
Title
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex
  Clustering
GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering
Madeline Navarro
Santiago Segarra
71
9
0
27 Oct 2022
Joint Network Topology Inference via a Shared Graphon Model
Joint Network Topology Inference via a Shared Graphon Model
Madeline Navarro
Santiago Segarra
71
12
0
17 Sep 2022
G-Mixup: Graph Data Augmentation for Graph Classification
G-Mixup: Graph Data Augmentation for Graph Classification
Xiaotian Han
Zhimeng Jiang
Ninghao Liu
Xia Hu
77
202
0
15 Feb 2022
Learning on Attribute-Missing Graphs
Learning on Attribute-Missing Graphs
Xu Chen
Siheng Chen
Jiangchao Yao
Huangjie Zheng
Ya Zhang
Ivor W Tsang
91
94
0
03 Nov 2020
Handling Missing Data with Graph Representation Learning
Handling Missing Data with Graph Representation Learning
Jiaxuan You
Xiaobai Ma
D. Ding
Mykel Kochenderfer
J. Leskovec
63
178
0
30 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
236
821
0
16 Jul 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Random Features Strengthen Graph Neural Networks
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNNAAML
76
239
0
08 Feb 2020
Position-aware Graph Neural Networks
Position-aware Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
93
496
0
11 Jun 2019
Missing Data Imputation with Adversarially-trained Graph Convolutional
  Networks
Missing Data Imputation with Adversarially-trained Graph Convolutional Networks
Indro Spinelli
Simone Scardapane
A. Uncini
MedImAI4CE
76
150
0
06 May 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,681
0
01 Oct 2018
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,485
0
04 Apr 2017
Distance Metric Learning using Graph Convolutional Networks: Application
  to Functional Brain Networks
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
S. Ktena
Sarah Parisot
Enzo Ferrante
Martin Rajchl
M. J. Lee
Ben Glocker
Daniel Rueckert
GNN
158
194
0
07 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
644
29,076
0
09 Sep 2016
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
223
3,353
0
30 Sep 2015
DeepWalk: Online Learning of Social Representations
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
257
9,800
0
26 Mar 2014
1