Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.07072
Cited By
The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning
13 September 2023
Alexander Bastounis
Alexander N. Gorban
Anders C. Hansen
D. Higham
Danil Prokhorov
Oliver J. Sutton
I. Tyukin
Qinghua Zhou
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning"
6 / 6 papers shown
Title
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAML
OOD
74
28
0
13 Sep 2021
High-dimensional separability for one- and few-shot learning
Alexander N. Gorban
Bogdan Grechuk
Evgeny M. Mirkes
Sergey V. Stasenko
I. Tyukin
DRL
69
23
0
28 Jun 2021
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
64
283
0
06 Sep 2018
Stochastic Separation Theorems
A. N. Gorban
I. Tyukin
53
50
0
03 Mar 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
139
2,527
0
26 Oct 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
1