ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.07072
  4. Cited By
The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in
  Deep Learning

The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning

13 September 2023
Alexander Bastounis
Alexander N. Gorban
Anders C. Hansen
D. Higham
Danil Prokhorov
Oliver J. Sutton
I. Tyukin
Qinghua Zhou
    OOD
ArXiv (abs)PDFHTML

Papers citing "The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning"

6 / 6 papers shown
Title
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAMLOOD
74
28
0
13 Sep 2021
High-dimensional separability for one- and few-shot learning
High-dimensional separability for one- and few-shot learning
Alexander N. Gorban
Bogdan Grechuk
Evgeny M. Mirkes
Sergey V. Stasenko
I. Tyukin
DRL
69
23
0
28 Jun 2021
Are adversarial examples inevitable?
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
64
283
0
06 Sep 2018
Stochastic Separation Theorems
Stochastic Separation Theorems
A. N. Gorban
I. Tyukin
53
50
0
03 Mar 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
139
2,527
0
26 Oct 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
1