ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.06626
  4. Cited By
Accelerating Deep Neural Networks via Semi-Structured Activation
  Sparsity

Accelerating Deep Neural Networks via Semi-Structured Activation Sparsity

12 September 2023
Matteo Grimaldi
Darshan C. Ganji
Ivan Lazarevich
Sudhakar Sah
ArXivPDFHTML

Papers citing "Accelerating Deep Neural Networks via Semi-Structured Activation Sparsity"

20 / 20 papers shown
Title
Revisiting Structured Dropout
Revisiting Structured Dropout
Yiren Zhao
Oluwatomisin Dada
Xitong Gao
Robert D. Mullins
BDL
45
2
0
05 Oct 2022
Skip-Convolutions for Efficient Video Processing
Skip-Convolutions for Efficient Video Processing
A. Habibian
Davide Abati
Taco S. Cohen
B. Bejnordi
87
50
0
23 Apr 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
268
703
0
31 Jan 2021
Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural
  Networks for Edge Devices
Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices
Byung Hoon Ahn
Jinwon Lee
J. Lin
Hsin-Pai Cheng
Jilei Hou
H. Esmaeilzadeh
87
55
0
04 Mar 2020
Importance Estimation for Neural Network Pruning
Importance Estimation for Neural Network Pruning
Pavlo Molchanov
Arun Mallya
Stephen Tyree
I. Frosio
Jan Kautz
3DPC
73
866
0
25 Jun 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
300
6,685
0
06 May 2019
Learned Step Size Quantization
Learned Step Size Quantization
S. K. Esser
J. McKinstry
Deepika Bablani
R. Appuswamy
D. Modha
MQ
65
792
0
21 Feb 2019
DropBlock: A regularization method for convolutional networks
DropBlock: A regularization method for convolutional networks
Golnaz Ghiasi
Nayeon Lee
Quoc V. Le
104
911
0
30 Oct 2018
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
145
4,957
0
30 Jul 2018
Quantization and Training of Neural Networks for Efficient
  Integer-Arithmetic-Only Inference
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
136
3,090
0
15 Dec 2017
To prune, or not to prune: exploring the efficacy of pruning for model
  compression
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
157
1,262
0
05 Oct 2017
WRPN: Wide Reduced-Precision Networks
WRPN: Wide Reduced-Precision Networks
Asit K. Mishra
Eriko Nurvitadhi
Jeffrey J. Cook
Debbie Marr
MQ
64
267
0
04 Sep 2017
Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu
Jianguo Li
Zhiqiang Shen
Gao Huang
Shoumeng Yan
Changshui Zhang
113
2,407
0
22 Aug 2017
ThiNet: A Filter Level Pruning Method for Deep Neural Network
  Compression
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
Jian-Hao Luo
Jianxin Wu
Weiyao Lin
49
1,758
0
20 Jul 2017
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep
  Neural Networks
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks
Minsoo Rhu
Mike O'Connor
Niladrish Chatterjee
Jeff Pool
S. Keckler
52
176
0
03 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,747
0
17 Apr 2017
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
175
3,687
0
31 Aug 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
132
7,448
0
24 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
223
8,793
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
273
6,628
0
08 Jun 2015
1