Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.06240
Cited By
Calibration in Machine Learning Uncertainty Quantification: beyond consistency to target adaptivity
12 September 2023
Pascal Pernot
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Calibration in Machine Learning Uncertainty Quantification: beyond consistency to target adaptivity"
17 / 17 papers shown
Title
Properties of the ENCE and other MAD-based calibration metrics
P. Pernot
40
5
0
17 May 2023
Clarifying Trust of Materials Property Predictions using Neural Networks with Distribution-Specific Uncertainty Quantification
Cameron J Gruich
Varun Madhavan
Yixin Wang
B. Goldsmith
45
10
0
06 Feb 2023
Uncertainty quantification for predictions of atomistic neural networks
Luis Itza Vazquez-Salazar
Eric D. Boittier
Markus Meuwly
21
15
0
14 Jul 2022
Reliable Neural Networks for Regression Uncertainty Estimation
Tony Tohme
Kevin Vanslette
K. Youcef-Toumi
UQCV
BDL
49
15
0
16 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
71
72
0
06 Sep 2021
A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification
Anastasios Nikolas Angelopoulos
Stephen Bates
OOD
172
615
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
205
1,146
0
07 Jul 2021
Improving Conditional Coverage via Orthogonal Quantile Regression
Shai Feldman
Stephen Bates
Yaniv Romano
71
43
0
01 Jun 2021
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
37
14
0
22 Feb 2021
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
138
88
0
18 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
258
1,911
0
12 Nov 2020
Metrics for Benchmarking and Uncertainty Quantification: Quality, Applicability, and a Path to Best Practices for Machine Learning in Chemistry
G. Vishwakarma
Aditya Sonpal
J. Hachmann
79
48
0
30 Sep 2020
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
72
191
0
20 May 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
204
1,405
0
21 Oct 2019
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Dan Levi
Liran Gispan
Niv Giladi
Ethan Fetaya
UQCV
78
143
0
28 May 2019
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
154
9,390
0
09 Feb 2018
Conditional validity of inductive conformal predictors
V. Vovk
203
416
0
12 Sep 2012
1